Text Classification
Transformers
Safetensors
llama
text-generation-inference
Inference Endpoints
hendrydong commited on
Commit
1b2d0b0
1 Parent(s): e20fb3b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -192
README.md CHANGED
@@ -1,199 +1,75 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
+ ## Training
2
+ The base model is meta-llama/Meta-Llama-3-8B-Instruct.
 
 
3
 
4
+ We use the training script at `https://github.com/WeiXiongUST/RLHF-Reward-Modeling`.
5
 
 
6
 
7
+ We train the model for one epoch with a learning rate of 2e-6, batch size 512, cosine learning rate decay with a warmup ratio 0.03.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
  ## Uses
10
 
11
+ ```python
12
+ from transformers import AutoTokenizer, pipeline
13
+ rm_tokenizer = AutoTokenizer.from_pretrained("sfairXC/FsfairX-LLaMA3-RM-v0.1")
14
+ device = 0 # accelerator.device
15
+ rm_pipe = pipeline(
16
+ "sentiment-analysis",
17
+ model="sfairXC/FsfairX-LLaMA3-RM-v0.1",
18
+ #device="auto",
19
+ device=device,
20
+ tokenizer=rm_tokenizer,
21
+ model_kwargs={"torch_dtype": torch.bfloat16}
22
+ )
23
+
24
+ pipe_kwargs = {
25
+ "return_all_scores": True,
26
+ "function_to_apply": "none",
27
+ "batch_size": 1
28
+ }
29
+
30
+ chat = [
31
+ {"role": "user", "content": "Hello, how are you?"},
32
+ {"role": "assistant", "content": "I'm doing great. How can I help you today?"},
33
+ {"role": "user", "content": "I'd like to show off how chat templating works!"},
34
+ ]
35
+
36
+ test_texts = [tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=False).replace(tokenizer.bos_token, "")]
37
+ pipe_outputs = rm_pipe(test_texts, **pipe_kwargs)
38
+ rewards = [output[0]["score"] for output in pipe_outputs]
39
+ ```
40
+
41
+
42
+ ## Results
43
+
44
+
45
+ This Reward model is the SOTA open-source RM (Apr 20, 2024).
46
+
47
+ | Metric | Score |
48
+ |--------------|--------|
49
+ | Chat | 99.44 |
50
+ | Chat Hard | 65.13 |
51
+ | Safety | 88.76 |
52
+ | Reasoning | 88.3 |
53
+
54
+
55
+ ## Reference
56
+ The repo was part of the iterative rejection sampling fine-tuning and iterative DPO. If you find the content of this repo useful in your work, please consider cite it as follows:
57
+
58
+ ```bibtex
59
+ @article{dong2023raft,
60
+ title={Raft: Reward ranked finetuning for generative foundation model alignment},
61
+ author={Dong, Hanze and Xiong, Wei and Goyal, Deepanshu and Pan, Rui and Diao, Shizhe and Zhang, Jipeng and Shum, Kashun and Zhang, Tong},
62
+ journal={arXiv preprint arXiv:2304.06767},
63
+ year={2023}
64
+ }
65
+
66
+ @misc{xiong2024iterative,
67
+ title={Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-Constraint},
68
+ author={Wei Xiong and Hanze Dong and Chenlu Ye and Ziqi Wang and Han Zhong and Heng Ji and Nan Jiang and Tong Zhang},
69
+ year={2024},
70
+ eprint={2312.11456},
71
+ archivePrefix={arXiv},
72
+ primaryClass={cs.LG}
73
+ }
74
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75