hendrydong
commited on
Commit
•
1b2d0b0
1
Parent(s):
e20fb3b
Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,75 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
tags: []
|
4 |
-
---
|
5 |
|
6 |
-
|
7 |
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
## Model Details
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
|
199 |
-
[More Information Needed]
|
|
|
1 |
+
## Training
|
2 |
+
The base model is meta-llama/Meta-Llama-3-8B-Instruct.
|
|
|
|
|
3 |
|
4 |
+
We use the training script at `https://github.com/WeiXiongUST/RLHF-Reward-Modeling`.
|
5 |
|
|
|
6 |
|
7 |
+
We train the model for one epoch with a learning rate of 2e-6, batch size 512, cosine learning rate decay with a warmup ratio 0.03.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
## Uses
|
10 |
|
11 |
+
```python
|
12 |
+
from transformers import AutoTokenizer, pipeline
|
13 |
+
rm_tokenizer = AutoTokenizer.from_pretrained("sfairXC/FsfairX-LLaMA3-RM-v0.1")
|
14 |
+
device = 0 # accelerator.device
|
15 |
+
rm_pipe = pipeline(
|
16 |
+
"sentiment-analysis",
|
17 |
+
model="sfairXC/FsfairX-LLaMA3-RM-v0.1",
|
18 |
+
#device="auto",
|
19 |
+
device=device,
|
20 |
+
tokenizer=rm_tokenizer,
|
21 |
+
model_kwargs={"torch_dtype": torch.bfloat16}
|
22 |
+
)
|
23 |
+
|
24 |
+
pipe_kwargs = {
|
25 |
+
"return_all_scores": True,
|
26 |
+
"function_to_apply": "none",
|
27 |
+
"batch_size": 1
|
28 |
+
}
|
29 |
+
|
30 |
+
chat = [
|
31 |
+
{"role": "user", "content": "Hello, how are you?"},
|
32 |
+
{"role": "assistant", "content": "I'm doing great. How can I help you today?"},
|
33 |
+
{"role": "user", "content": "I'd like to show off how chat templating works!"},
|
34 |
+
]
|
35 |
+
|
36 |
+
test_texts = [tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=False).replace(tokenizer.bos_token, "")]
|
37 |
+
pipe_outputs = rm_pipe(test_texts, **pipe_kwargs)
|
38 |
+
rewards = [output[0]["score"] for output in pipe_outputs]
|
39 |
+
```
|
40 |
+
|
41 |
+
|
42 |
+
## Results
|
43 |
+
|
44 |
+
|
45 |
+
This Reward model is the SOTA open-source RM (Apr 20, 2024).
|
46 |
+
|
47 |
+
| Metric | Score |
|
48 |
+
|--------------|--------|
|
49 |
+
| Chat | 99.44 |
|
50 |
+
| Chat Hard | 65.13 |
|
51 |
+
| Safety | 88.76 |
|
52 |
+
| Reasoning | 88.3 |
|
53 |
+
|
54 |
+
|
55 |
+
## Reference
|
56 |
+
The repo was part of the iterative rejection sampling fine-tuning and iterative DPO. If you find the content of this repo useful in your work, please consider cite it as follows:
|
57 |
+
|
58 |
+
```bibtex
|
59 |
+
@article{dong2023raft,
|
60 |
+
title={Raft: Reward ranked finetuning for generative foundation model alignment},
|
61 |
+
author={Dong, Hanze and Xiong, Wei and Goyal, Deepanshu and Pan, Rui and Diao, Shizhe and Zhang, Jipeng and Shum, Kashun and Zhang, Tong},
|
62 |
+
journal={arXiv preprint arXiv:2304.06767},
|
63 |
+
year={2023}
|
64 |
+
}
|
65 |
+
|
66 |
+
@misc{xiong2024iterative,
|
67 |
+
title={Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-Constraint},
|
68 |
+
author={Wei Xiong and Hanze Dong and Chenlu Ye and Ziqi Wang and Han Zhong and Heng Ji and Nan Jiang and Tong Zhang},
|
69 |
+
year={2024},
|
70 |
+
eprint={2312.11456},
|
71 |
+
archivePrefix={arXiv},
|
72 |
+
primaryClass={cs.LG}
|
73 |
+
}
|
74 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
|