sgangireddy's picture
Update README.md
f8a6ce4
metadata
language:
  - fi
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small Finnish all
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 fi
          type: mozilla-foundation/common_voice_11_0
          config: fi
          split: test
          args: fi
        metrics:
          - name: Wer
            type: wer
            value: 25.43330821401658

Whisper Small Finnish all

This model is a fine-tuned version of openai/whisper-small on the mozilla-foundation/common_voice_11_0 fi dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5334
  • Wer: 25.4333

Model description

The Model is fine-tuned for 5000 steps/updates on CV11 Finnish train+valiation data.

  • Zero-shot - 30.5 (CV9 test data, even on CV11 the WER is closer a bit higher than this)
  • Fine-tuned - 25.43 (CV11 test data)

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0025 19.0 1000 0.4265 24.8493
0.0005 38.0 2000 0.4785 25.3203
0.0003 57.01 3000 0.5073 25.3956
0.0002 76.01 4000 0.5253 25.4333
0.0002 96.0 5000 0.5334 25.4333

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2