File size: 16,002 Bytes
db8a108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05b94c0
db8a108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05b94c0
db8a108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c70ebe
db8a108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c70ebe
db8a108
 
 
 
 
 
 
 
 
05b94c0
db8a108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c70ebe
db8a108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c70ebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05b94c0
7c70ebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05b94c0
7c70ebe
 
 
05b94c0
7c70ebe
05b94c0
7c70ebe
05b94c0
7c70ebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05b94c0
 
 
 
 
 
 
 
 
7c70ebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05b94c0
 
 
 
 
 
 
 
 
 
 
 
7c70ebe
 
 
 
 
 
 
 
05b94c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c70ebe
 
 
 
 
 
 
 
 
 
 
 
05b94c0
7c70ebe
 
 
 
 
 
 
05b94c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db8a108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c70ebe
db8a108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05b94c0
db8a108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05b94c0
db8a108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c70ebe
db8a108
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
CartPole-v1: &cartpole-defaults
  n_timesteps: !!float 1e5
  env_hyperparams:
    n_envs: 8
  algo_hyperparams:
    n_steps: 32
    batch_size: 256
    n_epochs: 20
    gae_lambda: 0.8
    gamma: 0.98
    ent_coef: 0.0
    learning_rate: 0.001
    learning_rate_decay: linear
    clip_range: 0.2
    clip_range_decay: linear
  eval_hyperparams:
    step_freq: !!float 2.5e4

CartPole-v0:
  <<: *cartpole-defaults
  n_timesteps: !!float 5e4

MountainCar-v0:
  n_timesteps: !!float 1e6
  env_hyperparams:
    normalize: true
    n_envs: 16
  algo_hyperparams:
    n_steps: 16
    n_epochs: 4
    gae_lambda: 0.98
    gamma: 0.99
    ent_coef: 0.0

MountainCarContinuous-v0:
  n_timesteps: !!float 1e5
  env_hyperparams:
    normalize: true
    n_envs: 4
  # policy_hyperparams:
  #   init_layers_orthogonal: false
  #   log_std_init: -3.29
  #   use_sde: true
  algo_hyperparams:
    n_steps: 512
    batch_size: 256
    n_epochs: 10
    learning_rate: !!float 7.77e-5
    ent_coef: 0.01 # 0.00429
    ent_coef_decay: linear
    clip_range: 0.1
    gae_lambda: 0.9
    max_grad_norm: 5
    vf_coef: 0.19
  eval_hyperparams:
    step_freq: 5000

Acrobot-v1:
  n_timesteps: !!float 1e6
  env_hyperparams:
    n_envs: 16
    normalize: true
  algo_hyperparams:
    n_steps: 256
    n_epochs: 4
    gae_lambda: 0.94
    gamma: 0.99
    ent_coef: 0.0

LunarLander-v2:
  n_timesteps: !!float 4e6
  env_hyperparams:
    n_envs: 16
  algo_hyperparams:
    n_steps: 1024
    batch_size: 64
    n_epochs: 4
    gae_lambda: 0.98
    gamma: 0.999
    learning_rate: !!float 5e-4
    learning_rate_decay: linear
    clip_range: 0.2
    clip_range_decay: linear
    ent_coef: 0.01
    normalize_advantage: false

BipedalWalker-v3:
  n_timesteps: !!float 10e6
  env_hyperparams:
    n_envs: 16
    normalize: true
  algo_hyperparams:
    n_steps: 2048
    batch_size: 64
    gae_lambda: 0.95
    gamma: 0.99
    n_epochs: 10
    ent_coef: 0.001
    learning_rate: !!float 2.5e-4
    learning_rate_decay: linear
    clip_range: 0.2
    clip_range_decay: linear

CarRacing-v0: &carracing-defaults
  n_timesteps: !!float 4e6
  env_hyperparams:
    n_envs: 8
    frame_stack: 4
  policy_hyperparams: &carracing-policy-defaults
    use_sde: true
    log_std_init: -2
    init_layers_orthogonal: false
    activation_fn: relu
    share_features_extractor: false
    cnn_flatten_dim: 256
    hidden_sizes: [256]
  algo_hyperparams:
    n_steps: 512
    batch_size: 128
    n_epochs: 10
    learning_rate: !!float 1e-4
    learning_rate_decay: linear
    gamma: 0.99
    gae_lambda: 0.95
    ent_coef: 0.0
    sde_sample_freq: 4
    max_grad_norm: 0.5
    vf_coef: 0.5
    clip_range: 0.2

impala-CarRacing-v0:
  <<: *carracing-defaults
  env_id: CarRacing-v0
  policy_hyperparams:
    <<: *carracing-policy-defaults
    cnn_style: impala
    init_layers_orthogonal: true
    cnn_layers_init_orthogonal: false
    hidden_sizes: []

# BreakoutNoFrameskip-v4
# PongNoFrameskip-v4
# SpaceInvadersNoFrameskip-v4
# QbertNoFrameskip-v4
_atari: &atari-defaults
  n_timesteps: !!float 1e7
  env_hyperparams: &atari-env-defaults
    n_envs: 8
    frame_stack: 4
    no_reward_timeout_steps: 1000
    no_reward_fire_steps: 500
    vec_env_class: async
  policy_hyperparams: &atari-policy-defaults
    activation_fn: relu
  algo_hyperparams: &atari-algo-defaults
    n_steps: 128
    batch_size: 256
    n_epochs: 4
    learning_rate: !!float 2.5e-4
    learning_rate_decay: linear
    clip_range: 0.1
    clip_range_decay: linear
    vf_coef: 0.5
    ent_coef: 0.01
  eval_hyperparams:
    deterministic: false

_norm-rewards-atari: &norm-rewards-atari-default
  <<: *atari-defaults
  env_hyperparams:
    <<: *atari-env-defaults
    clip_atari_rewards: false
    normalize: true
    normalize_kwargs:
      norm_obs: false
      norm_reward: true

norm-rewards-BreakoutNoFrameskip-v4:
  <<: *norm-rewards-atari-default
  env_id: BreakoutNoFrameskip-v4

debug-PongNoFrameskip-v4:
  <<: *atari-defaults
  device: cpu
  env_id: PongNoFrameskip-v4
  env_hyperparams:
    <<: *atari-env-defaults
    vec_env_class: sync

_impala-atari: &impala-atari-defaults
  <<: *atari-defaults
  policy_hyperparams:
    <<: *atari-policy-defaults
    cnn_style: impala
    cnn_flatten_dim: 256
    init_layers_orthogonal: true
    cnn_layers_init_orthogonal: false

impala-PongNoFrameskip-v4:
  <<: *impala-atari-defaults
  env_id: PongNoFrameskip-v4

impala-BreakoutNoFrameskip-v4:
  <<: *impala-atari-defaults
  env_id: BreakoutNoFrameskip-v4

impala-SpaceInvadersNoFrameskip-v4:
  <<: *impala-atari-defaults
  env_id: SpaceInvadersNoFrameskip-v4

impala-QbertNoFrameskip-v4:
  <<: *impala-atari-defaults
  env_id: QbertNoFrameskip-v4

_microrts: &microrts-defaults
  <<: *atari-defaults
  n_timesteps: !!float 2e6
  env_hyperparams: &microrts-env-defaults
    n_envs: 8
    vec_env_class: sync
    mask_actions: true
  policy_hyperparams: &microrts-policy-defaults
    <<: *atari-policy-defaults
    cnn_style: microrts
    cnn_flatten_dim: 128
  algo_hyperparams: &microrts-algo-defaults
    <<: *atari-algo-defaults
    clip_range_decay: none
    clip_range_vf: 0.1
    ppo2_vf_coef_halving: true
  eval_hyperparams: &microrts-eval-defaults
    deterministic: false # Good idea because MultiCategorical mode isn't great

_no-mask-microrts: &no-mask-microrts-defaults
  <<: *microrts-defaults
  env_hyperparams:
    <<: *microrts-env-defaults
    mask_actions: false

MicrortsMining-v1-NoMask:
  <<: *no-mask-microrts-defaults
  env_id: MicrortsMining-v1

MicrortsAttackShapedReward-v1-NoMask:
  <<: *no-mask-microrts-defaults
  env_id: MicrortsAttackShapedReward-v1

MicrortsRandomEnemyShapedReward3-v1-NoMask:
  <<: *no-mask-microrts-defaults
  env_id: MicrortsRandomEnemyShapedReward3-v1

_microrts_ai: &microrts-ai-defaults
  <<: *microrts-defaults
  n_timesteps: !!float 100e6
  additional_keys_to_log: ["microrts_stats", "microrts_results"]
  env_hyperparams: &microrts-ai-env-defaults
    n_envs: 24
    env_type: microrts
    make_kwargs: &microrts-ai-env-make-kwargs-defaults
      num_selfplay_envs: 0
      max_steps: 4000
      render_theme: 2
      map_paths: [maps/16x16/basesWorkers16x16.xml]
      reward_weight: [10.0, 1.0, 1.0, 0.2, 1.0, 4.0]
  policy_hyperparams: &microrts-ai-policy-defaults
    <<: *microrts-policy-defaults
    cnn_flatten_dim: 256
    actor_head_style: gridnet
  algo_hyperparams: &microrts-ai-algo-defaults
    <<: *microrts-algo-defaults
    learning_rate: !!float 2.5e-4
    learning_rate_decay: linear
    n_steps: 512
    batch_size: 3072
    n_epochs: 4
    ent_coef: 0.01
    vf_coef: 0.5
    max_grad_norm: 0.5
    clip_range: 0.1
    clip_range_vf: 0.1
  eval_hyperparams: &microrts-ai-eval-defaults
    <<: *microrts-eval-defaults
    score_function: mean
    max_video_length: 4000
    env_overrides: &microrts-ai-eval-env-overrides
      make_kwargs:
        <<: *microrts-ai-env-make-kwargs-defaults
        max_steps: 4000
        reward_weight: [1.0, 0, 0, 0, 0, 0]

MicrortsAttackPassiveEnemySparseReward-v3:
  <<: *microrts-ai-defaults
  n_timesteps: !!float 2e6
  env_id: MicrortsAttackPassiveEnemySparseReward-v3 # Workaround to keep model name simple
  env_hyperparams:
    <<: *microrts-ai-env-defaults
    bots:
      passiveAI: 24

MicrortsDefeatRandomEnemySparseReward-v3: &microrts-random-ai-defaults
  <<: *microrts-ai-defaults
  n_timesteps: !!float 2e6
  env_id: MicrortsDefeatRandomEnemySparseReward-v3 # Workaround to keep model name simple
  env_hyperparams:
    <<: *microrts-ai-env-defaults
    bots:
      randomBiasedAI: 24

enc-dec-MicrortsDefeatRandomEnemySparseReward-v3:
  <<: *microrts-random-ai-defaults
  policy_hyperparams:
    <<: *microrts-ai-policy-defaults
    cnn_style: gridnet_encoder
    actor_head_style: gridnet_decoder
    v_hidden_sizes: [128]

unet-MicrortsDefeatRandomEnemySparseReward-v3:
  <<: *microrts-random-ai-defaults
  # device: cpu
  policy_hyperparams:
    <<: *microrts-ai-policy-defaults
    actor_head_style: unet
    v_hidden_sizes: [256, 128]
  algo_hyperparams:
    <<: *microrts-ai-algo-defaults
    learning_rate: !!float 2.5e-4
    learning_rate_decay: spike

MicrortsDefeatCoacAIShaped-v3: &microrts-coacai-defaults
  <<: *microrts-ai-defaults
  env_id: MicrortsDefeatCoacAIShaped-v3 # Workaround to keep model name simple
  n_timesteps: !!float 300e6
  env_hyperparams: &microrts-coacai-env-defaults
    <<: *microrts-ai-env-defaults
    bots:
      coacAI: 24
  eval_hyperparams: &microrts-coacai-eval-defaults
    <<: *microrts-ai-eval-defaults
    step_freq: !!float 1e6
    n_episodes: 26
    env_overrides: &microrts-coacai-eval-env-overrides
      <<: *microrts-ai-eval-env-overrides
      n_envs: 26
      bots:
        coacAI: 2
        randomBiasedAI: 2
        randomAI: 2
        passiveAI: 2
        workerRushAI: 2
        lightRushAI: 2
        naiveMCTSAI: 2
        mixedBot: 2
        rojo: 2
        izanagi: 2
        tiamat: 2
        droplet: 2
        guidedRojoA3N: 2

MicrortsDefeatCoacAIShaped-v3-diverseBots: &microrts-diverse-defaults
  <<: *microrts-coacai-defaults
  env_hyperparams:
    <<: *microrts-coacai-env-defaults
    bots:
      coacAI: 18
      randomBiasedAI: 2
      lightRushAI: 2
      workerRushAI: 2

enc-dec-MicrortsDefeatCoacAIShaped-v3-diverseBots:
  &microrts-env-dec-diverse-defaults
  <<: *microrts-diverse-defaults
  policy_hyperparams:
    <<: *microrts-ai-policy-defaults
    cnn_style: gridnet_encoder
    actor_head_style: gridnet_decoder
    v_hidden_sizes: [128]

debug-enc-dec-MicrortsDefeatCoacAIShaped-v3-diverseBots:
  <<: *microrts-env-dec-diverse-defaults
  n_timesteps: !!float 1e6

unet-MicrortsDefeatCoacAIShaped-v3-diverseBots: &microrts-unet-defaults
  <<: *microrts-diverse-defaults
  policy_hyperparams:
    <<: *microrts-ai-policy-defaults
    actor_head_style: unet
    v_hidden_sizes: [256, 128]
  algo_hyperparams: &microrts-unet-algo-defaults
    <<: *microrts-ai-algo-defaults
    learning_rate: !!float 2.5e-4
    learning_rate_decay: spike

Microrts-selfplay-unet: &microrts-selfplay-defaults
  <<: *microrts-unet-defaults
  env_hyperparams: &microrts-selfplay-env-defaults
    <<: *microrts-ai-env-defaults
    make_kwargs: &microrts-selfplay-env-make-kwargs-defaults
      <<: *microrts-ai-env-make-kwargs-defaults
      num_selfplay_envs: 36
    self_play_kwargs:
      num_old_policies: 12
      save_steps: 300000
      swap_steps: 6000
      swap_window_size: 4
      window: 33
  eval_hyperparams: &microrts-selfplay-eval-defaults
    <<: *microrts-coacai-eval-defaults
    env_overrides: &microrts-selfplay-eval-env-overrides
      <<: *microrts-coacai-eval-env-overrides
      self_play_kwargs: {}

Microrts-selfplay-unet-winloss: &microrts-selfplay-winloss-defaults
  <<: *microrts-selfplay-defaults
  env_hyperparams:
    <<: *microrts-selfplay-env-defaults
    make_kwargs:
      <<: *microrts-selfplay-env-make-kwargs-defaults
      reward_weight: [1.0, 0, 0, 0, 0, 0]
  algo_hyperparams: &microrts-selfplay-winloss-algo-defaults
    <<: *microrts-unet-algo-defaults
    gamma: 0.999

Microrts-selfplay-unet-decay: &microrts-selfplay-decay-defaults
  <<: *microrts-selfplay-defaults
  microrts_reward_decay_callback: true
  algo_hyperparams:
    <<: *microrts-unet-algo-defaults
    gamma_end: 0.999

Microrts-selfplay-unet-debug: &microrts-selfplay-debug-defaults
  <<: *microrts-selfplay-decay-defaults
  eval_hyperparams:
    <<: *microrts-selfplay-eval-defaults
    step_freq: !!float 1e5
    env_overrides:
      <<: *microrts-selfplay-eval-env-overrides
      n_envs: 24
      bots:
        coacAI: 12
        randomBiasedAI: 4
        workerRushAI: 4
        lightRushAI: 4

Microrts-selfplay-unet-debug-mps:
  <<: *microrts-selfplay-debug-defaults
  device: mps

HalfCheetahBulletEnv-v0: &pybullet-defaults
  n_timesteps: !!float 2e6
  env_hyperparams: &pybullet-env-defaults
    n_envs: 16
    normalize: true
  policy_hyperparams: &pybullet-policy-defaults
    pi_hidden_sizes: [256, 256]
    v_hidden_sizes: [256, 256]
    activation_fn: relu
  algo_hyperparams: &pybullet-algo-defaults
    n_steps: 512
    batch_size: 128
    n_epochs: 20
    gamma: 0.99
    gae_lambda: 0.9
    ent_coef: 0.0
    max_grad_norm: 0.5
    vf_coef: 0.5
    learning_rate: !!float 3e-5
    clip_range: 0.4

AntBulletEnv-v0:
  <<: *pybullet-defaults
  policy_hyperparams:
    <<: *pybullet-policy-defaults
  algo_hyperparams:
    <<: *pybullet-algo-defaults

Walker2DBulletEnv-v0:
  <<: *pybullet-defaults
  algo_hyperparams:
    <<: *pybullet-algo-defaults
    clip_range_decay: linear

HopperBulletEnv-v0:
  <<: *pybullet-defaults
  algo_hyperparams:
    <<: *pybullet-algo-defaults
    clip_range_decay: linear

HumanoidBulletEnv-v0:
  <<: *pybullet-defaults
  n_timesteps: !!float 1e7
  env_hyperparams:
    <<: *pybullet-env-defaults
    n_envs: 8
  policy_hyperparams:
    <<: *pybullet-policy-defaults
    # log_std_init: -1
  algo_hyperparams:
    <<: *pybullet-algo-defaults
    n_steps: 2048
    batch_size: 64
    n_epochs: 10
    gae_lambda: 0.95
    learning_rate: !!float 2.5e-4
    clip_range: 0.2

_procgen: &procgen-defaults
  env_hyperparams: &procgen-env-defaults
    env_type: procgen
    n_envs: 64
    # grayscale: false
    # frame_stack: 4
    normalize: true # procgen only normalizes reward
    make_kwargs: &procgen-make-kwargs-defaults
      num_threads: 8
  policy_hyperparams: &procgen-policy-defaults
    activation_fn: relu
    cnn_style: impala
    cnn_flatten_dim: 256
    init_layers_orthogonal: true
    cnn_layers_init_orthogonal: false
  algo_hyperparams: &procgen-algo-defaults
    gamma: 0.999
    gae_lambda: 0.95
    n_steps: 256
    batch_size: 2048
    n_epochs: 3
    ent_coef: 0.01
    clip_range: 0.2
    # clip_range_decay: linear
    clip_range_vf: 0.2
    learning_rate: !!float 5e-4
    # learning_rate_decay: linear
    vf_coef: 0.5
  eval_hyperparams: &procgen-eval-defaults
    ignore_first_episode: true
    # deterministic: false
    step_freq: !!float 1e5

_procgen-easy: &procgen-easy-defaults
  <<: *procgen-defaults
  n_timesteps: !!float 25e6
  env_hyperparams: &procgen-easy-env-defaults
    <<: *procgen-env-defaults
    make_kwargs:
      <<: *procgen-make-kwargs-defaults
      distribution_mode: easy

procgen-coinrun-easy: &coinrun-easy-defaults
  <<: *procgen-easy-defaults
  env_id: coinrun

debug-procgen-coinrun:
  <<: *coinrun-easy-defaults
  device: cpu

procgen-starpilot-easy:
  <<: *procgen-easy-defaults
  env_id: starpilot

procgen-bossfight-easy:
  <<: *procgen-easy-defaults
  env_id: bossfight

procgen-bigfish-easy:
  <<: *procgen-easy-defaults
  env_id: bigfish

_procgen-hard: &procgen-hard-defaults
  <<: *procgen-defaults
  n_timesteps: !!float 200e6
  env_hyperparams: &procgen-hard-env-defaults
    <<: *procgen-env-defaults
    n_envs: 256
    make_kwargs:
      <<: *procgen-make-kwargs-defaults
      distribution_mode: hard
  algo_hyperparams: &procgen-hard-algo-defaults
    <<: *procgen-algo-defaults
    batch_size: 8192
    clip_range_decay: linear
    learning_rate_decay: linear
  eval_hyperparams:
    <<: *procgen-eval-defaults
    step_freq: !!float 5e5

procgen-starpilot-hard: &procgen-starpilot-hard-defaults
  <<: *procgen-hard-defaults
  env_id: starpilot

procgen-starpilot-hard-2xIMPALA:
  <<: *procgen-starpilot-hard-defaults
  policy_hyperparams:
    <<: *procgen-policy-defaults
    impala_channels: [32, 64, 64]
  algo_hyperparams:
    <<: *procgen-hard-algo-defaults
    learning_rate: !!float 3.3e-4

procgen-starpilot-hard-2xIMPALA-fat:
  <<: *procgen-starpilot-hard-defaults
  policy_hyperparams:
    <<: *procgen-policy-defaults
    impala_channels: [32, 64, 64]
    cnn_flatten_dim: 512
  algo_hyperparams:
    <<: *procgen-hard-algo-defaults
    learning_rate: !!float 2.5e-4

procgen-starpilot-hard-4xIMPALA:
  <<: *procgen-starpilot-hard-defaults
  policy_hyperparams:
    <<: *procgen-policy-defaults
    impala_channels: [64, 128, 128]
  algo_hyperparams:
    <<: *procgen-hard-algo-defaults
    learning_rate: !!float 2.1e-4