DQN playing BreakoutNoFrameskip-v4 from https://github.com/sgoodfriend/rl-algo-impls/tree/983cb75e43e51cf4ef57f177194ab9a4a1a8808b
923ccaf
from typing import Optional, Tuple, Type | |
import torch | |
import torch.nn as nn | |
from torch.distributions import Distribution, Normal | |
from rl_algo_impls.shared.actor.actor import Actor, PiForward, pi_forward | |
from rl_algo_impls.shared.module.utils import mlp | |
class GaussianDistribution(Normal): | |
def log_prob(self, a: torch.Tensor) -> torch.Tensor: | |
return super().log_prob(a).sum(axis=-1) | |
def sample(self) -> torch.Tensor: | |
return self.rsample() | |
class GaussianActorHead(Actor): | |
def __init__( | |
self, | |
act_dim: int, | |
in_dim: int, | |
hidden_sizes: Tuple[int, ...] = (32,), | |
activation: Type[nn.Module] = nn.Tanh, | |
init_layers_orthogonal: bool = True, | |
log_std_init: float = -0.5, | |
) -> None: | |
super().__init__() | |
self.act_dim = act_dim | |
layer_sizes = (in_dim,) + hidden_sizes + (act_dim,) | |
self.mu_net = mlp( | |
layer_sizes, | |
activation, | |
init_layers_orthogonal=init_layers_orthogonal, | |
final_layer_gain=0.01, | |
) | |
self.log_std = nn.Parameter( | |
torch.ones(act_dim, dtype=torch.float32) * log_std_init | |
) | |
def _distribution(self, obs: torch.Tensor) -> Distribution: | |
mu = self.mu_net(obs) | |
std = torch.exp(self.log_std) | |
return GaussianDistribution(mu, std) | |
def forward( | |
self, | |
obs: torch.Tensor, | |
actions: Optional[torch.Tensor] = None, | |
action_masks: Optional[torch.Tensor] = None, | |
) -> PiForward: | |
assert ( | |
not action_masks | |
), f"{self.__class__.__name__} does not support action_masks" | |
pi = self._distribution(obs) | |
return pi_forward(pi, actions) | |
def action_shape(self) -> Tuple[int, ...]: | |
return (self.act_dim,) | |