sgoodfriend's picture
DQN playing BreakoutNoFrameskip-v4 from https://github.com/sgoodfriend/rl-algo-impls/tree/983cb75e43e51cf4ef57f177194ab9a4a1a8808b
923ccaf
from typing import Optional, Tuple, Type
import torch
import torch.nn as nn
from torch.distributions import Distribution, Normal
from rl_algo_impls.shared.actor.actor import Actor, PiForward, pi_forward
from rl_algo_impls.shared.module.utils import mlp
class GaussianDistribution(Normal):
def log_prob(self, a: torch.Tensor) -> torch.Tensor:
return super().log_prob(a).sum(axis=-1)
def sample(self) -> torch.Tensor:
return self.rsample()
class GaussianActorHead(Actor):
def __init__(
self,
act_dim: int,
in_dim: int,
hidden_sizes: Tuple[int, ...] = (32,),
activation: Type[nn.Module] = nn.Tanh,
init_layers_orthogonal: bool = True,
log_std_init: float = -0.5,
) -> None:
super().__init__()
self.act_dim = act_dim
layer_sizes = (in_dim,) + hidden_sizes + (act_dim,)
self.mu_net = mlp(
layer_sizes,
activation,
init_layers_orthogonal=init_layers_orthogonal,
final_layer_gain=0.01,
)
self.log_std = nn.Parameter(
torch.ones(act_dim, dtype=torch.float32) * log_std_init
)
def _distribution(self, obs: torch.Tensor) -> Distribution:
mu = self.mu_net(obs)
std = torch.exp(self.log_std)
return GaussianDistribution(mu, std)
def forward(
self,
obs: torch.Tensor,
actions: Optional[torch.Tensor] = None,
action_masks: Optional[torch.Tensor] = None,
) -> PiForward:
assert (
not action_masks
), f"{self.__class__.__name__} does not support action_masks"
pi = self._distribution(obs)
return pi_forward(pi, actions)
@property
def action_shape(self) -> Tuple[int, ...]:
return (self.act_dim,)