sgoodfriend's picture
DQN playing BreakoutNoFrameskip-v4 from https://github.com/sgoodfriend/rl-algo-impls/tree/983cb75e43e51cf4ef57f177194ab9a4a1a8808b
923ccaf
from typing import Dict, Optional, Tuple, Type
import numpy as np
import torch
import torch.nn as nn
from numpy.typing import NDArray
from torch.distributions import Distribution, constraints
from rl_algo_impls.shared.actor import Actor, PiForward, pi_forward
from rl_algo_impls.shared.actor.categorical import MaskedCategorical
from rl_algo_impls.shared.encoder import EncoderOutDim
from rl_algo_impls.shared.module.utils import mlp
class GridnetDistribution(Distribution):
def __init__(
self,
map_size: int,
action_vec: NDArray[np.int64],
logits: torch.Tensor,
masks: torch.Tensor,
validate_args: Optional[bool] = None,
) -> None:
self.map_size = map_size
self.action_vec = action_vec
masks = masks.view(-1, masks.shape[-1])
split_masks = torch.split(masks, action_vec.tolist(), dim=1)
grid_logits = logits.reshape(-1, action_vec.sum())
split_logits = torch.split(grid_logits, action_vec.tolist(), dim=1)
self.categoricals = [
MaskedCategorical(logits=lg, validate_args=validate_args, mask=m)
for lg, m in zip(split_logits, split_masks)
]
batch_shape = logits.size()[:-1] if logits.ndimension() > 1 else torch.Size()
super().__init__(batch_shape=batch_shape, validate_args=validate_args)
def log_prob(self, action: torch.Tensor) -> torch.Tensor:
prob_stack = torch.stack(
[
c.log_prob(a)
for a, c in zip(action.view(-1, action.shape[-1]).T, self.categoricals)
],
dim=-1,
)
logprob = prob_stack.view(-1, self.map_size, len(self.action_vec))
return logprob.sum(dim=(1, 2))
def entropy(self) -> torch.Tensor:
ent = torch.stack([c.entropy() for c in self.categoricals], dim=-1)
ent = ent.view(-1, self.map_size, len(self.action_vec))
return ent.sum(dim=(1, 2))
def sample(self, sample_shape: torch.Size = torch.Size()) -> torch.Tensor:
s = torch.stack([c.sample(sample_shape) for c in self.categoricals], dim=-1)
return s.view(-1, self.map_size, len(self.action_vec))
@property
def mode(self) -> torch.Tensor:
m = torch.stack([c.mode for c in self.categoricals], dim=-1)
return m.view(-1, self.map_size, len(self.action_vec))
@property
def arg_constraints(self) -> Dict[str, constraints.Constraint]:
# Constraints handled by child distributions in dist
return {}
class GridnetActorHead(Actor):
def __init__(
self,
map_size: int,
action_vec: NDArray[np.int64],
in_dim: EncoderOutDim,
hidden_sizes: Tuple[int, ...] = (32,),
activation: Type[nn.Module] = nn.ReLU,
init_layers_orthogonal: bool = True,
) -> None:
super().__init__()
self.map_size = map_size
self.action_vec = action_vec
assert isinstance(in_dim, int)
layer_sizes = (in_dim,) + hidden_sizes + (map_size * action_vec.sum(),)
self._fc = mlp(
layer_sizes,
activation,
init_layers_orthogonal=init_layers_orthogonal,
final_layer_gain=0.01,
)
def forward(
self,
obs: torch.Tensor,
actions: Optional[torch.Tensor] = None,
action_masks: Optional[torch.Tensor] = None,
) -> PiForward:
assert (
action_masks is not None
), f"No mask case unhandled in {self.__class__.__name__}"
logits = self._fc(obs)
pi = GridnetDistribution(self.map_size, self.action_vec, logits, action_masks)
return pi_forward(pi, actions)
@property
def action_shape(self) -> Tuple[int, ...]:
return (self.map_size, len(self.action_vec))