File size: 5,303 Bytes
341188c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import gym
import os

from gym.wrappers.resize_observation import ResizeObservation
from gym.wrappers.gray_scale_observation import GrayScaleObservation
from gym.wrappers.frame_stack import FrameStack
from stable_baselines3.common.atari_wrappers import (
    MaxAndSkipEnv,
    NoopResetEnv,
)
from stable_baselines3.common.vec_env.base_vec_env import VecEnv
from stable_baselines3.common.vec_env.dummy_vec_env import DummyVecEnv
from stable_baselines3.common.vec_env.subproc_vec_env import SubprocVecEnv
from stable_baselines3.common.vec_env.vec_normalize import VecNormalize
from torch.utils.tensorboard.writer import SummaryWriter
from typing import Any, Callable, Dict, Optional, Union

from runner.config import Config
from shared.policy.policy import VEC_NORMALIZE_FILENAME
from wrappers.atari_wrappers import EpisodicLifeEnv, FireOnLifeStarttEnv, ClipRewardEnv
from wrappers.episode_record_video import EpisodeRecordVideo
from wrappers.episode_stats_writer import EpisodeStatsWriter
from wrappers.initial_step_truncate_wrapper import InitialStepTruncateWrapper
from wrappers.video_compat_wrapper import VideoCompatWrapper


def make_env(
    config: Config,
    training: bool = True,
    render: bool = False,
    normalize_load_path: Optional[str] = None,
    n_envs: int = 1,
    frame_stack: int = 1,
    make_kwargs: Optional[Dict[str, Any]] = None,
    no_reward_timeout_steps: Optional[int] = None,
    no_reward_fire_steps: Optional[int] = None,
    vec_env_class: str = "dummy",
    normalize: bool = False,
    normalize_kwargs: Optional[Dict[str, Any]] = None,
    tb_writer: Optional[SummaryWriter] = None,
    rolling_length: int = 100,
    train_record_video: bool = False,
    video_step_interval: Union[int, float] = 1_000_000,
    initial_steps_to_truncate: Optional[int] = None,
) -> VecEnv:
    if "BulletEnv" in config.env_id:
        import pybullet_envs

    make_kwargs = make_kwargs if make_kwargs is not None else {}
    if "BulletEnv" in config.env_id and render:
        make_kwargs["render"] = True
    if "CarRacing" in config.env_id:
        make_kwargs["verbose"] = 0

    spec = gym.spec(config.env_id)

    def make(idx: int) -> Callable[[], gym.Env]:
        def _make() -> gym.Env:
            env = gym.make(config.env_id, **make_kwargs)
            env = gym.wrappers.RecordEpisodeStatistics(env)
            env = VideoCompatWrapper(env)
            if training and train_record_video and idx == 0:
                env = EpisodeRecordVideo(
                    env,
                    config.video_prefix,
                    step_increment=n_envs,
                    video_step_interval=int(video_step_interval),
                )
            if training and initial_steps_to_truncate:
                env = InitialStepTruncateWrapper(
                    env, idx * initial_steps_to_truncate // n_envs
                )
            if "AtariEnv" in spec.entry_point:  # type: ignore
                env = NoopResetEnv(env, noop_max=30)
                env = MaxAndSkipEnv(env, skip=4)
                env = EpisodicLifeEnv(env, training=training)
                action_meanings = env.unwrapped.get_action_meanings()
                if "FIRE" in action_meanings:  # type: ignore
                    env = FireOnLifeStarttEnv(env, action_meanings.index("FIRE"))
                env = ClipRewardEnv(env, training=training)
                env = ResizeObservation(env, (84, 84))
                env = GrayScaleObservation(env, keep_dim=False)
                env = FrameStack(env, frame_stack)
            elif "CarRacing" in config.env_id:
                env = ResizeObservation(env, (64, 64))
                env = GrayScaleObservation(env, keep_dim=False)
                env = FrameStack(env, frame_stack)

            if no_reward_timeout_steps:
                from wrappers.no_reward_timeout import NoRewardTimeout

                env = NoRewardTimeout(
                    env, no_reward_timeout_steps, n_fire_steps=no_reward_fire_steps
                )

            seed = config.seed(training=training)
            if seed is not None:
                env.seed(seed + idx)
                env.action_space.seed(seed + idx)
                env.observation_space.seed(seed + idx)

            return env

        return _make

    VecEnvClass = {"dummy": DummyVecEnv, "subproc": SubprocVecEnv}[vec_env_class]
    venv = VecEnvClass([make(i) for i in range(n_envs)])
    if training:
        assert tb_writer
        venv = EpisodeStatsWriter(
            venv, tb_writer, training=training, rolling_length=rolling_length
        )
    if normalize:
        if normalize_load_path:
            venv = VecNormalize.load(
                os.path.join(normalize_load_path, VEC_NORMALIZE_FILENAME), venv
            )
        else:
            venv = VecNormalize(venv, training=training, **(normalize_kwargs or {}))
        if not training:
            venv.norm_reward = False
    return venv


def make_eval_env(
    config: Config, override_n_envs: Optional[int] = None, **kwargs
) -> VecEnv:
    kwargs = kwargs.copy()
    kwargs["training"] = False
    if override_n_envs is not None:
        kwargs["n_envs"] = override_n_envs
        if override_n_envs == 1:
            kwargs["vec_env_class"] = "dummy"
    return make_env(config, **kwargs)