File size: 6,311 Bytes
63ccb46 526e45d 63ccb46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import os
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
import argparse
import requests
import shutil
import subprocess
import tempfile
import wandb
import wandb.apis.public
from typing import List, Optional
from huggingface_hub.hf_api import HfApi, upload_folder
from huggingface_hub.repocard import metadata_save
from pyvirtualdisplay.display import Display
from rl_algo_impls.publish.markdown_format import EvalTableData, model_card_text
from rl_algo_impls.runner.config import EnvHyperparams
from rl_algo_impls.runner.evaluate import EvalArgs, evaluate_model
from rl_algo_impls.runner.env import make_eval_env
from rl_algo_impls.shared.callbacks.eval_callback import evaluate
from rl_algo_impls.wrappers.vec_episode_recorder import VecEpisodeRecorder
def publish(
wandb_run_paths: List[str],
wandb_report_url: str,
huggingface_user: Optional[str] = None,
huggingface_token: Optional[str] = None,
virtual_display: bool = False,
) -> None:
if virtual_display:
display = Display(visible=False, size=(1400, 900))
display.start()
api = wandb.Api()
runs = [api.run(rp) for rp in wandb_run_paths]
algo = runs[0].config["algo"]
hyperparam_id = runs[0].config["env"]
evaluations = [
evaluate_model(
EvalArgs(
algo,
hyperparam_id,
seed=r.config.get("seed", None),
render=False,
best=True,
n_envs=None,
n_episodes=10,
no_print_returns=True,
wandb_run_path="/".join(r.path),
),
os.getcwd(),
)
for r in runs
]
run_metadata = requests.get(runs[0].file("wandb-metadata.json").url).json()
table_data = list(EvalTableData(r, e) for r, e in zip(runs, evaluations))
best_eval = sorted(
table_data, key=lambda d: d.evaluation.stats.score, reverse=True
)[0]
with tempfile.TemporaryDirectory() as tmpdirname:
_, (policy, stats, config) = best_eval
repo_name = config.model_name(include_seed=False)
repo_dir_path = os.path.join(tmpdirname, repo_name)
# Locally clone this repo to a temp directory
subprocess.run(["git", "clone", ".", repo_dir_path])
shutil.rmtree(os.path.join(repo_dir_path, ".git"))
model_path = config.model_dir_path(best=True, downloaded=True)
shutil.copytree(
model_path,
os.path.join(
repo_dir_path, "saved_models", config.model_dir_name(best=True)
),
)
github_url = "https://github.com/sgoodfriend/rl-algo-impls"
commit_hash = run_metadata.get("git", {}).get("commit", None)
env_id = runs[0].config.get("env_id") or runs[0].config["env"]
card_text = model_card_text(
algo,
env_id,
github_url,
commit_hash,
wandb_report_url,
table_data,
best_eval,
)
readme_filepath = os.path.join(repo_dir_path, "README.md")
os.remove(readme_filepath)
with open(readme_filepath, "w") as f:
f.write(card_text)
metadata = {
"library_name": "rl-algo-impls",
"tags": [
env_id,
algo,
"deep-reinforcement-learning",
"reinforcement-learning",
],
"model-index": [
{
"name": algo,
"results": [
{
"metrics": [
{
"type": "mean_reward",
"value": str(stats.score),
"name": "mean_reward",
}
],
"task": {
"type": "reinforcement-learning",
"name": "reinforcement-learning",
},
"dataset": {
"name": env_id,
"type": env_id,
},
}
],
}
],
}
metadata_save(readme_filepath, metadata)
video_env = VecEpisodeRecorder(
make_eval_env(
config,
EnvHyperparams(**config.env_hyperparams),
override_n_envs=1,
normalize_load_path=model_path,
),
os.path.join(repo_dir_path, "replay"),
max_video_length=3600,
)
evaluate(
video_env,
policy,
1,
deterministic=config.eval_params.get("deterministic", True),
)
api = HfApi()
huggingface_user = huggingface_user or api.whoami()["name"]
huggingface_repo = f"{huggingface_user}/{repo_name}"
api.create_repo(
token=huggingface_token,
repo_id=huggingface_repo,
private=False,
exist_ok=True,
)
repo_url = upload_folder(
repo_id=huggingface_repo,
folder_path=repo_dir_path,
path_in_repo="",
commit_message=f"{algo.upper()} playing {env_id} from {github_url}/tree/{commit_hash}",
token=huggingface_token,
delete_patterns="*",
)
print(f"Pushed model to the hub: {repo_url}")
def huggingface_publish():
parser = argparse.ArgumentParser()
parser.add_argument(
"--wandb-run-paths",
type=str,
nargs="+",
help="Run paths of the form entity/project/run_id",
)
parser.add_argument("--wandb-report-url", type=str, help="Link to WandB report")
parser.add_argument(
"--huggingface-user",
type=str,
help="Huggingface user or team to upload model cards",
default=None,
)
parser.add_argument(
"--virtual-display", action="store_true", help="Use headless virtual display"
)
args = parser.parse_args()
print(args)
publish(**vars(args))
if __name__ == "__main__":
huggingface_publish()
|