File size: 1,903 Bytes
971403f
 
 
 
 
 
f050c92
 
971403f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f050c92
971403f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from typing import Optional, Tuple, Type

import torch
import torch.nn as nn
from torch.distributions import Categorical

from rl_algo_impls.shared.actor import Actor, PiForward, pi_forward
from rl_algo_impls.shared.module.utils import mlp


class MaskedCategorical(Categorical):
    def __init__(
        self,
        probs=None,
        logits=None,
        validate_args=None,
        mask: Optional[torch.Tensor] = None,
    ):
        if mask is not None:
            assert logits is not None, "mask requires logits and not probs"
            logits = torch.where(mask, logits, -1e8)
        self.mask = mask
        super().__init__(probs, logits, validate_args)

    def entropy(self) -> torch.Tensor:
        if self.mask is None:
            return super().entropy()
        # If mask set, then use approximation for entropy
        p_log_p = self.logits * self.probs  # type: ignore
        masked = torch.where(self.mask, p_log_p, 0)
        return -masked.sum(-1)


class CategoricalActorHead(Actor):
    def __init__(
        self,
        act_dim: int,
        in_dim: int,
        hidden_sizes: Tuple[int, ...] = (32,),
        activation: Type[nn.Module] = nn.Tanh,
        init_layers_orthogonal: bool = True,
    ) -> None:
        super().__init__()
        layer_sizes = (in_dim,) + hidden_sizes + (act_dim,)
        self._fc = mlp(
            layer_sizes,
            activation,
            init_layers_orthogonal=init_layers_orthogonal,
            final_layer_gain=0.01,
        )

    def forward(
        self,
        obs: torch.Tensor,
        actions: Optional[torch.Tensor] = None,
        action_masks: Optional[torch.Tensor] = None,
    ) -> PiForward:
        logits = self._fc(obs)
        pi = MaskedCategorical(logits=logits, mask=action_masks)
        return pi_forward(pi, actions)

    @property
    def action_shape(self) -> Tuple[int, ...]:
        return ()