File size: 10,498 Bytes
b05c680 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import numpy as np
import torch
import torch.nn as nn
from dataclasses import asdict, dataclass, field
from torch.optim import Adam
from stable_baselines3.common.vec_env.base_vec_env import VecEnv, VecEnvObs
from torch.utils.tensorboard.writer import SummaryWriter
from typing import List, Optional, Sequence, NamedTuple, TypeVar
from shared.algorithm import Algorithm
from shared.callbacks.callback import Callback
from shared.gae import compute_advantage, compute_rtg_and_advantage, RtgAdvantage
from shared.policy.on_policy import ActorCritic
from shared.schedule import constant_schedule, linear_schedule
from shared.trajectory import Trajectory, TrajectoryAccumulator
@dataclass
class PPOTrajectory(Trajectory):
logp_a: List[float] = field(default_factory=list)
def add(
self,
obs: np.ndarray,
act: np.ndarray,
next_obs: np.ndarray,
rew: float,
terminated: bool,
v: float,
logp_a: float,
):
super().add(obs, act, next_obs, rew, terminated, v)
self.logp_a.append(logp_a)
class PPOTrajectoryAccumulator(TrajectoryAccumulator):
def __init__(self, num_envs: int) -> None:
super().__init__(num_envs, PPOTrajectory)
def step(
self,
obs: VecEnvObs,
action: np.ndarray,
next_obs: VecEnvObs,
reward: np.ndarray,
done: np.ndarray,
val: np.ndarray,
logp_a: np.ndarray,
) -> None:
super().step(obs, action, next_obs, reward, done, val, logp_a)
class TrainStepStats(NamedTuple):
loss: float
pi_loss: float
v_loss: float
entropy_loss: float
approx_kl: float
clipped_frac: float
@dataclass
class TrainStats:
loss: float
pi_loss: float
v_loss: float
entropy_loss: float
approx_kl: float
clipped_frac: float
def __init__(self, step_stats: List[TrainStepStats]) -> None:
self.loss = np.mean([s.loss for s in step_stats]).item()
self.pi_loss = np.mean([s.pi_loss for s in step_stats]).item()
self.v_loss = np.mean([s.v_loss for s in step_stats]).item()
self.entropy_loss = np.mean([s.entropy_loss for s in step_stats]).item()
self.approx_kl = np.mean([s.approx_kl for s in step_stats]).item()
self.clipped_frac = np.mean([s.clipped_frac for s in step_stats]).item()
def write_to_tensorboard(self, tb_writer: SummaryWriter, global_step: int) -> None:
tb_writer.add_scalars("losses", asdict(self), global_step=global_step)
def __repr__(self) -> str:
return " | ".join(
[
f"Loss: {round(self.loss, 2)}",
f"Pi L: {round(self.pi_loss, 2)}",
f"V L: {round(self.v_loss, 2)}",
f"E L: {round(self.entropy_loss, 2)}",
f"Apx KL Div: {round(self.approx_kl, 2)}",
f"Clip Frac: {round(self.clipped_frac, 2)}",
]
)
PPOSelf = TypeVar("PPOSelf", bound="PPO")
class PPO(Algorithm):
def __init__(
self,
policy: ActorCritic,
env: VecEnv,
device: torch.device,
tb_writer: SummaryWriter,
learning_rate: float = 3e-4,
learning_rate_decay: str = "none",
n_steps: int = 2048,
batch_size: int = 64,
n_epochs: int = 10,
gamma: float = 0.99,
gae_lambda: float = 0.95,
clip_range: float = 0.2,
clip_range_decay: str = "none",
clip_range_vf: Optional[float] = None,
clip_range_vf_decay: str = "none",
normalize_advantage: bool = True,
ent_coef: float = 0.0,
ent_coef_decay: str = "none",
vf_coef: float = 0.5,
max_grad_norm: float = 0.5,
update_rtg_between_epochs: bool = False,
sde_sample_freq: int = -1,
) -> None:
super().__init__(policy, env, device, tb_writer)
self.policy = policy
self.gamma = gamma
self.gae_lambda = gae_lambda
self.optimizer = Adam(self.policy.parameters(), lr=learning_rate)
self.lr_schedule = (
linear_schedule(learning_rate, 0)
if learning_rate_decay == "linear"
else constant_schedule(learning_rate)
)
self.max_grad_norm = max_grad_norm
self.clip_range_schedule = (
linear_schedule(clip_range, 0)
if clip_range_decay == "linear"
else constant_schedule(clip_range)
)
self.clip_range_vf_schedule = None
if clip_range_vf:
self.clip_range_vf_schedule = (
linear_schedule(clip_range_vf, 0)
if clip_range_vf_decay == "linear"
else constant_schedule(clip_range_vf)
)
self.normalize_advantage = normalize_advantage
self.ent_coef_schedule = (
linear_schedule(ent_coef, 0)
if ent_coef_decay == "linear"
else constant_schedule(ent_coef)
)
self.vf_coef = vf_coef
self.n_steps = n_steps
self.batch_size = batch_size
self.n_epochs = n_epochs
self.sde_sample_freq = sde_sample_freq
self.update_rtg_between_epochs = update_rtg_between_epochs
def learn(
self: PPOSelf,
total_timesteps: int,
callback: Optional[Callback] = None,
) -> PPOSelf:
obs = self.env.reset()
ts_elapsed = 0
while ts_elapsed < total_timesteps:
accumulator = self._collect_trajectories(obs)
progress = ts_elapsed / total_timesteps
train_stats = self.train(accumulator.all_trajectories, progress)
rollout_steps = self.n_steps * self.env.num_envs
ts_elapsed += rollout_steps
train_stats.write_to_tensorboard(self.tb_writer, ts_elapsed)
if callback:
callback.on_step(timesteps_elapsed=rollout_steps)
return self
def _collect_trajectories(self, obs: VecEnvObs) -> PPOTrajectoryAccumulator:
self.policy.eval()
accumulator = PPOTrajectoryAccumulator(self.env.num_envs)
self.policy.reset_noise()
for i in range(self.n_steps):
if self.sde_sample_freq > 0 and i > 0 and i % self.sde_sample_freq == 0:
self.policy.reset_noise()
action, value, logp_a, clamped_action = self.policy.step(obs)
next_obs, reward, done, _ = self.env.step(clamped_action)
accumulator.step(obs, action, next_obs, reward, done, value, logp_a)
obs = next_obs
return accumulator
def train(self, trajectories: List[PPOTrajectory], progress: float) -> TrainStats:
self.policy.train()
learning_rate = self.lr_schedule(progress)
self.optimizer.param_groups[0]["lr"] = learning_rate
pi_clip = self.clip_range_schedule(progress)
v_clip = (
self.clip_range_vf_schedule(progress)
if self.clip_range_vf_schedule
else None
)
ent_coef = self.ent_coef_schedule(progress)
obs = torch.as_tensor(
np.concatenate([np.array(t.obs) for t in trajectories]), device=self.device
)
act = torch.as_tensor(
np.concatenate([np.array(t.act) for t in trajectories]), device=self.device
)
rtg, adv = compute_rtg_and_advantage(
trajectories, self.policy, self.gamma, self.gae_lambda, self.device
)
orig_v = torch.as_tensor(
np.concatenate([np.array(t.v) for t in trajectories]), device=self.device
)
orig_logp_a = torch.as_tensor(
np.concatenate([np.array(t.logp_a) for t in trajectories]),
device=self.device,
)
step_stats = []
for _ in range(self.n_epochs):
if self.update_rtg_between_epochs:
rtg, adv = compute_rtg_and_advantage(
trajectories, self.policy, self.gamma, self.gae_lambda, self.device
)
else:
adv = compute_advantage(
trajectories, self.policy, self.gamma, self.gae_lambda, self.device
)
idxs = torch.randperm(len(obs))
for i in range(0, len(obs), self.batch_size):
mb_idxs = idxs[i : i + self.batch_size]
mb_adv = adv[mb_idxs]
if self.normalize_advantage:
mb_adv = (mb_adv - mb_adv.mean(-1)) / (mb_adv.std(-1) + 1e-8)
step_stats.append(
self._train_step(
pi_clip,
v_clip,
ent_coef,
obs[mb_idxs],
act[mb_idxs],
rtg[mb_idxs],
mb_adv,
orig_v[mb_idxs],
orig_logp_a[mb_idxs],
)
)
return TrainStats(step_stats)
def _train_step(
self,
pi_clip: float,
v_clip: Optional[float],
ent_coef: float,
obs: torch.Tensor,
act: torch.Tensor,
rtg: torch.Tensor,
adv: torch.Tensor,
orig_v: torch.Tensor,
orig_logp_a: torch.Tensor,
) -> TrainStepStats:
logp_a, entropy, v = self.policy(obs, act)
logratio = logp_a - orig_logp_a
ratio = torch.exp(logratio)
clip_ratio = torch.clamp(ratio, min=1 - pi_clip, max=1 + pi_clip)
pi_loss = torch.maximum(-ratio * adv, -clip_ratio * adv).mean()
v_loss = (v - rtg).pow(2)
if v_clip:
v_clipped = (torch.clamp(v, orig_v - v_clip, orig_v + v_clip) - rtg).pow(2)
v_loss = torch.maximum(v_loss, v_clipped)
v_loss = v_loss.mean()
entropy_loss = entropy.mean()
loss = pi_loss - ent_coef * entropy_loss + self.vf_coef * v_loss
self.optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm)
self.optimizer.step()
with torch.no_grad():
approx_kl = ((ratio - 1) - logratio).mean().cpu().numpy().item()
clipped_frac = (
((ratio - 1).abs() > pi_clip).float().mean().cpu().numpy().item()
)
return TrainStepStats(
loss.item(),
pi_loss.item(),
v_loss.item(),
entropy_loss.item(),
approx_kl,
clipped_frac,
)
|