VPG playing MountainCarContinuous-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/e8bc541d8b5e67bb4d3f2075282463fb61f5f2c6
5d5d65a
import numpy as np | |
import torch | |
import torch.nn as nn | |
from collections import defaultdict | |
from dataclasses import dataclass, asdict | |
from stable_baselines3.common.vec_env.base_vec_env import VecEnv, VecEnvObs | |
from torch.optim import Adam | |
from torch.utils.tensorboard.writer import SummaryWriter | |
from typing import Optional, Sequence, TypeVar | |
from shared.algorithm import Algorithm | |
from shared.callbacks.callback import Callback | |
from shared.gae import compute_rtg_and_advantage, compute_advantage | |
from shared.trajectory import Trajectory, TrajectoryAccumulator | |
from vpg.policy import VPGActorCritic | |
class TrainEpochStats: | |
pi_loss: float | |
v_loss: float | |
envs_with_done: int = 0 | |
episodes_done: int = 0 | |
def write_to_tensorboard(self, tb_writer: SummaryWriter, global_step: int) -> None: | |
tb_writer.add_scalars("losses", asdict(self), global_step=global_step) | |
class VPGTrajectoryAccumulator(TrajectoryAccumulator): | |
def __init__(self, num_envs: int) -> None: | |
super().__init__(num_envs, trajectory_class=Trajectory) | |
self.completed_per_env: defaultdict[int, int] = defaultdict(int) | |
def on_done(self, env_idx: int, trajectory: Trajectory) -> None: | |
self.completed_per_env[env_idx] += 1 | |
VanillaPolicyGradientSelf = TypeVar( | |
"VanillaPolicyGradientSelf", bound="VanillaPolicyGradient" | |
) | |
class VanillaPolicyGradient(Algorithm): | |
def __init__( | |
self, | |
policy: VPGActorCritic, | |
env: VecEnv, | |
device: torch.device, | |
tb_writer: SummaryWriter, | |
gamma: float = 0.99, | |
pi_lr: float = 3e-4, | |
val_lr: float = 1e-3, | |
train_v_iters: int = 80, | |
gae_lambda: float = 0.97, | |
max_grad_norm: float = 10.0, | |
n_steps: int = 4_000, | |
sde_sample_freq: int = -1, | |
update_rtg_between_v_iters: bool = False, | |
) -> None: | |
super().__init__(policy, env, device, tb_writer) | |
self.policy = policy | |
self.gamma = gamma | |
self.gae_lambda = gae_lambda | |
self.pi_optim = Adam(self.policy.pi.parameters(), lr=pi_lr) | |
self.val_optim = Adam(self.policy.v.parameters(), lr=val_lr) | |
self.max_grad_norm = max_grad_norm | |
self.n_steps = n_steps | |
self.train_v_iters = train_v_iters | |
self.sde_sample_freq = sde_sample_freq | |
self.update_rtg_between_v_iters = update_rtg_between_v_iters | |
def learn( | |
self: VanillaPolicyGradientSelf, | |
total_timesteps: int, | |
callback: Optional[Callback] = None, | |
) -> VanillaPolicyGradientSelf: | |
timesteps_elapsed = 0 | |
epoch_cnt = 0 | |
while timesteps_elapsed < total_timesteps: | |
epoch_cnt += 1 | |
accumulator = self._collect_trajectories() | |
epoch_stats = self.train(accumulator.all_trajectories) | |
epoch_stats.envs_with_done = len(accumulator.completed_per_env) | |
epoch_stats.episodes_done = sum(accumulator.completed_per_env.values()) | |
epoch_steps = accumulator.n_timesteps() | |
timesteps_elapsed += epoch_steps | |
epoch_stats.write_to_tensorboard( | |
self.tb_writer, global_step=timesteps_elapsed | |
) | |
print( | |
f"Epoch: {epoch_cnt} | " | |
f"Pi Loss: {round(epoch_stats.pi_loss, 2)} | " | |
f"V Loss: {round(epoch_stats.v_loss, 2)} | " | |
f"Total Steps: {timesteps_elapsed}" | |
) | |
if callback: | |
callback.on_step(timesteps_elapsed=epoch_steps) | |
return self | |
def train(self, trajectories: Sequence[Trajectory]) -> TrainEpochStats: | |
self.policy.train() | |
obs = torch.as_tensor( | |
np.concatenate([np.array(t.obs) for t in trajectories]), device=self.device | |
) | |
act = torch.as_tensor( | |
np.concatenate([np.array(t.act) for t in trajectories]), device=self.device | |
) | |
rtg, adv = compute_rtg_and_advantage( | |
trajectories, self.policy, self.gamma, self.gae_lambda, self.device | |
) | |
pi_loss = self._update_pi(obs, act, adv) | |
v_loss = 0 | |
for _ in range(self.train_v_iters): | |
if self.update_rtg_between_v_iters: | |
rtg = compute_advantage( | |
trajectories, self.policy, self.gamma, self.gae_lambda, self.device | |
) | |
v_loss = self._update_v(obs, rtg) | |
return TrainEpochStats(pi_loss, v_loss) | |
def _collect_trajectories(self) -> VPGTrajectoryAccumulator: | |
self.policy.eval() | |
obs = self.env.reset() | |
accumulator = VPGTrajectoryAccumulator(self.env.num_envs) | |
self.policy.reset_noise() | |
for i in range(self.n_steps): | |
if self.sde_sample_freq > 0 and i > 0 and i % self.sde_sample_freq == 0: | |
self.policy.reset_noise() | |
action, value, _, clamped_action = self.policy.step(obs) | |
next_obs, reward, done, _ = self.env.step(clamped_action) | |
accumulator.step(obs, action, next_obs, reward, done, value) | |
obs = next_obs | |
return accumulator | |
def _update_pi( | |
self, obs: torch.Tensor, act: torch.Tensor, adv: torch.Tensor | |
) -> float: | |
self.pi_optim.zero_grad() | |
_, logp, _ = self.policy.pi(obs, act) | |
pi_loss = -(logp * adv).mean() | |
pi_loss.backward() | |
nn.utils.clip_grad_norm_(self.policy.pi.parameters(), self.max_grad_norm) | |
self.pi_optim.step() | |
return pi_loss.item() | |
def _update_v(self, obs: torch.Tensor, rtg: torch.Tensor) -> float: | |
self.val_optim.zero_grad() | |
v = self.policy.v(obs) | |
v_loss = ((v - rtg) ** 2).mean() | |
v_loss.backward() | |
nn.utils.clip_grad_norm_(self.policy.v.parameters(), self.max_grad_norm) | |
self.val_optim.step() | |
return v_loss.item() | |