--- language: en tags: - text-generation - transformers - conversational - quantum-math - PEFT - Safetensors - AutoTrain license: other datasets: conversational-dataset model-index: - name: Zero LLM Quantum AI results: - task: type: text-generation dataset: name: conversational-dataset type: text metrics: - name: Training Loss type: loss value: 1.74 --- # **QuantumAI: Zero LLM Quantum AI Model** **Zero Quantum AI** is an LLM that tries to bypass needing quantum computing using interdimensional mathematics, quantum math, and the **Mathematical Probability of Goodness**. Developed by **TalkToAi.org** and **ResearchForum.Online**, this model leverages cutting-edge AI frameworks to redefine conversational AI, ensuring deep, ethical decision-making capabilities. The model is fine-tuned on **Meta-Llama-3.1-8B-Instruct** and trained via **AutoTrain** to optimize conversational tasks, dialogue generation, and inference. ![Zero LLM Quantum AI](https://huggingface.co/shafire/QuantumAI/resolve/main/ZeroQuantumAI.png) ## **Model Information** - **Base Model**: `meta-llama/Meta-Llama-3.1-8B` - **Fine-tuned Model**: `meta-llama/Meta-Llama-3.1-8B-Instruct` - **Training Framework**: `AutoTrain` - **Training Data**: Conversational and text-generation focused dataset ### **Tech Stack** - Transformers - PEFT (Parameter-Efficient Fine-Tuning) - TensorBoard (for logging and metrics) - Safetensors ### **Usage Types** - Interactive dialogue - Text generation ### **Key Features** - **Quantum Mathematics & Interdimensional Calculations**: Utilizes quantum principles to predict user intent and generate insightful responses. - **Mathematical Probability of Goodness**: All responses are ethically aligned using a mathematical framework, ensuring positive interactions. - **Efficient Inference**: Supports **4-bit quantization** for faster and resource-efficient deployment. ## **Installation and Usage** To use the model in your Python code: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Example usage messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Output print(response) ## **Inference API** This model is not yet deployed to the Hugging Face Inference API. However, you can deploy it to **Inference Endpoints** for dedicated, serverless inference. ## **Training Process** The **Zero Quantum AI** model was trained using **AutoTrain** with the following configuration: - **Hardware**: CUDA 12.1 - **Training Precision**: Mixed FP16 - **Batch Size**: 2 - **Learning Rate**: 3e-05 - **Epochs**: 5 - **Optimizer**: AdamW - **PEFT**: Enabled (LoRA with lora_r=16, lora_alpha=32) - **Quantization**: Int4 for efficient deployment - **Scheduler**: Linear with warmup - **Gradient Accumulation**: 4 steps - **Max Sequence Length**: 2048 tokens ## **Training Metrics** Monitored using **TensorBoard**, with key training metrics: - **Training Loss**: 1.74 - **Learning Rate**: Adjusted per epoch, starting at 3e-05. ## **Model Features** - **Text Generation**: Handles various types of user queries and provides coherent, contextually aware responses. - **Conversational AI**: Optimized specifically for generating interactive dialogues. - **Efficient Inference**: Supports Int4 quantization for faster, resource-friendly deployment. ## **License** This model is governed under a custom license. Please refer to [QuantumAI License](https://huggingface.co/shafire/QuantumAI) for details, in compliance with **Meta-Llama 3.1 License**.