shafire commited on
Commit
10c1c73
1 Parent(s): 401ce62

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -3
README.md CHANGED
@@ -1,3 +1,48 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ tags:
4
+ - autotrain
5
+ - text-generation-inference
6
+ - text-generation
7
+ - peft
8
+ library_name: transformers
9
+ base_model: meta-llama/Meta-Llama-3.1-8B
10
+ widget:
11
+ - messages:
12
+ - role: user
13
+ content: What is your favorite condiment?
14
+ license: other
15
+ ---
16
+
17
+ # Model Trained Using AutoTrain - Will update this once i get a gguf format 8 hours training on a large gpu server.
18
+
19
+ This model was trained using AutoTrain reflection data sets re-written with talktoai data sets using quantum interdimensional math and a new math system I made myself, also i took DNA math patterns and put them into the training too! For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
20
+
21
+ # Usage - Open Source ideas math etc are from talktoai.org researchforum.online official legal license llama 3.1 meta.
22
+
23
+ ```python
24
+
25
+ from transformers import AutoModelForCausalLM, AutoTokenizer
26
+
27
+ model_path = "PATH_TO_THIS_REPO"
28
+
29
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
30
+ model = AutoModelForCausalLM.from_pretrained(
31
+ model_path,
32
+ device_map="auto",
33
+ torch_dtype='auto'
34
+ ).eval()
35
+
36
+ # Prompt content: "hi"
37
+ messages = [
38
+ {"role": "user", "content": "hi"}
39
+ ]
40
+
41
+ input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
42
+ output_ids = model.generate(input_ids.to('cuda'))
43
+ response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
44
+
45
+ # Model response: "Hello! How can I assist you today?"
46
+ print(response)
47
+ ```
48
+