Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,48 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
---
|
3 |
+
tags:
|
4 |
+
- autotrain
|
5 |
+
- text-generation-inference
|
6 |
+
- text-generation
|
7 |
+
- peft
|
8 |
+
library_name: transformers
|
9 |
+
base_model: meta-llama/Meta-Llama-3.1-8B
|
10 |
+
widget:
|
11 |
+
- messages:
|
12 |
+
- role: user
|
13 |
+
content: What is your favorite condiment?
|
14 |
+
license: other
|
15 |
+
---
|
16 |
+
|
17 |
+
# Model Trained Using AutoTrain - Will update this once i get a gguf format 8 hours training on a large gpu server.
|
18 |
+
|
19 |
+
This model was trained using AutoTrain reflection data sets re-written with talktoai data sets using quantum interdimensional math and a new math system I made myself, also i took DNA math patterns and put them into the training too! For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
|
20 |
+
|
21 |
+
# Usage - Open Source ideas math etc are from talktoai.org researchforum.online official legal license llama 3.1 meta.
|
22 |
+
|
23 |
+
```python
|
24 |
+
|
25 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
26 |
+
|
27 |
+
model_path = "PATH_TO_THIS_REPO"
|
28 |
+
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
30 |
+
model = AutoModelForCausalLM.from_pretrained(
|
31 |
+
model_path,
|
32 |
+
device_map="auto",
|
33 |
+
torch_dtype='auto'
|
34 |
+
).eval()
|
35 |
+
|
36 |
+
# Prompt content: "hi"
|
37 |
+
messages = [
|
38 |
+
{"role": "user", "content": "hi"}
|
39 |
+
]
|
40 |
+
|
41 |
+
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
|
42 |
+
output_ids = model.generate(input_ids.to('cuda'))
|
43 |
+
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
|
44 |
+
|
45 |
+
# Model response: "Hello! How can I assist you today?"
|
46 |
+
print(response)
|
47 |
+
```
|
48 |
+
|