--- tags: - autotrain - text-generation-inference - text-generation - peft library_name: transformers base_model: meta-llama/Meta-Llama-3.1-8B widget: - messages: - role: user content: What is your favorite condiment? license: other --- # Model Trained Using AutoTrain - Will update this once i get a gguf format 8 hours training on a large gpu server. This model was trained using AutoTrain reflection data sets re-written with talktoai data sets using quantum interdimensional math and a new math system I made myself, also i took DNA math patterns and put them into the training too! For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage - Open Source ideas math etc are from talktoai.org researchforum.online official legal license llama 3.1 meta. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```