Update handler.py
Browse files- handler.py +19 -30
handler.py
CHANGED
@@ -1,33 +1,22 @@
|
|
1 |
import torch
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
)
|
14 |
-
self.
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
inputs = data.pop("inputs", data)
|
19 |
-
parameters = data.pop("parameters", None)
|
20 |
-
|
21 |
-
# preprocess
|
22 |
-
inputs = self.tokenizer(inputs, return_tensors="pt").to(self.device)
|
23 |
-
|
24 |
-
# pass inputs with all kwargs in data
|
25 |
-
if parameters is not None:
|
26 |
-
outputs = self.model.generate(**inputs, **parameters)
|
27 |
-
else:
|
28 |
outputs = self.model.generate(**inputs)
|
29 |
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
return [{"generated_text": prediction}]
|
|
|
1 |
import torch
|
2 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
3 |
+
|
4 |
+
class ModelHandler:
|
5 |
+
def __init__(self):
|
6 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained("shaheerzk/text_to_sql")
|
8 |
+
self.tokenizer = AutoTokenizer.from_pretrained("shaheerzk/text_to_sql")
|
9 |
+
self.model.to(self.device)
|
10 |
+
|
11 |
+
def handle(self, inputs):
|
12 |
+
# Preprocess input
|
13 |
+
text = inputs.get("text", "")
|
14 |
+
inputs = self.tokenizer(text, return_tensors="pt").to(self.device)
|
15 |
+
|
16 |
+
# Inference
|
17 |
+
with torch.no_grad():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
outputs = self.model.generate(**inputs)
|
19 |
|
20 |
+
# Post-process output
|
21 |
+
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
22 |
+
return {"generated_text": generated_text}
|
|