import torch from transformers import AutoModelForSeq2SeqLM, AutoTokenizer class ModelHandler: def __init__(self): self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.model = AutoModelForSeq2SeqLM.from_pretrained("shaheerzk/text_to_sql") self.tokenizer = AutoTokenizer.from_pretrained("shaheerzk/text_to_sql") self.model.to(self.device) def handle(self, inputs): # Preprocess input text = inputs.get("text", "") inputs = self.tokenizer(text, return_tensors="pt").to(self.device) # Inference with torch.no_grad(): outputs = self.model.generate(**inputs) # Post-process output generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True) return {"generated_text": generated_text}