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ABSTRACT

Recent developments in natural language representations have been accompanied
by large and expensive models that leverage vast amounts of general-domain text
through self-supervised pre-training. Due to the cost of applying such models
to down-stream tasks, several model compression techniques on pre-trained lan-
guage representations have been proposed (Sun et al., 2019a; Sanh, 2019). How-
ever, surprisingly, the simple baseline of just pre-training and fine-tuning compact
models has been overlooked. In this paper, we first show that pre-training remains
important in the context of smaller architectures, and fine-tuning pre-trained com-
pact models can be competitive to more elaborate methods proposed in concurrent
work. Starting with pre-trained compact models, we then explore transferring task
knowledge from large fine-tuned models through standard knowledge distillation.
The resulting simple, yet effective and general algorithm, Pre-trained Distillation,
brings further improvements. Through extensive experiments, we more generally
explore the interaction between pre-training and distillation under two variables
that have been under-studied: model size and properties of unlabeled task data.
One surprising observation is that they have a compound effect even when se-
quentially applied on the same data. To accelerate future research, we will make
our 24 pre-trained miniature BERT models publicly available.

1 INTRODUCTION

Self-supervised learning on a general-domain text corpus followed by end-task learning is the two-
staged training approach that enabled deep-and-wide Transformer-based networks (Vaswani et al.,
2017) to advance language understanding (Devlin et al., 2018; Yang et al., 2019b; Sun et al., 2019b;
Liu et al., 2019). However, state-of-the-art models have hundreds of millions of parameters, incur-
ring a high computational cost. Our goal is to realize their gains under a restricted memory and
latency budget. We seek a training method that is well-performing, general and simple and can
leverage additional resources such as unlabeled task data.

Before considering compression techniques, we start with the following research question: Could
we directly train small models using the same two-staged approach? In other words, we explore the
idea of applying language model (LM) pre-training and task fine-tuning to compact architectures
directly. This simple baseline has so far been overlooked by the NLP community, potentially based
on an underlying assumption that the limited capacity of compact models is capitalized better when
focusing on the end task rather than a general language model objective. Concurrent work to ours
proposes variations of the standard pre-training+fine-tuning procedure, but with limited generality
(Sun et al., 2019a; Sanh, 2019). We make the surprising finding that pre-training+fine-tuning in its
original formulation is a competitive method for building compact models.

For further gains, we additionally leverage knowledge distillation (Hinton et al., 2015), the standard
technique for model compression. A compact student is trained to recover the predictions of a highly
accurate teacher. In addition to the posited regularization effect of these soft labels (Hinton et al.,
2015), distillation provides a means of producing pseudo-labels for unlabeled data. By regarding
LM pre-training of compact models as a student initialization strategy, we can take advantage of
both methods. The resulting algorithm is a sequence of three standard training operations: masked
LM (MLM) pre-training (Devlin et al., 2018), task-specific distillation, and optional fine-tuning.
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Algorithm 1
Require: student θ, teacher Ω, unlabeled LM data
DLM , unlabeled transfer dataDT , labeled dataDL

1: Initialize θ by pre-training an MLM+ on DLM
2: for each x ∈ DT do
3: Get loss L← −

∑
y PΩ(y|x) logPθ(y|x)

4: Update student θ ← BACKPROP(L, θ)
5: end for
6: Fine-tune θ on DL . Optional step.
7: return θ

Pre-training

Distillation

Fine-tuning
(Optional)

Compact Model

Unlabeled
LM data

Unlabeled
transfer data

Labeled data

Large teacher

Final Compact 
Model

Figure 1: Pre-trained Distillation

From here on, we will refer to it as Pre-trained Distillation (PD) (Figure 1). As we will show in
Section 6.2, PD outperforms the pre-training+fine-tuning (PF) baseline, especially in the presence
of a large transfer set for distillation.

In a controlled study following data and model architecture settings in concurrent work (Section 4),
we show that Pre-trained Distillation outperforms or is competitive with more elaborate approaches
which use either more sophisticated distillation of task knowledge (Sun et al., 2019a) or more so-
phisticated pre-training from unlabeled text (Sanh, 2019). The former distill task knowledge from
intermediate teacher activations, starting with a heuristically initialized student. The latter fine-tune
a compact model that is pre-trained on unlabeled text with the help of a larger LM teacher.

One of the most noteworthy contributions of our paper are the extensive experiments that exam-
ine how Pre-trained Distillation and its baselines perform under various conditions. We investigate
two axes that have been under-studied in previous work: model size and amount/quality of unla-
beled data. While experimenting with 24 models of various sizes (4m to 110m parameters) and
depth/width trade-offs, we observe that pre-trained students can leverage depth much better than
width; in contrast, this property is not visible for randomly-initialized models. For the second axis,
we vary the amount of unlabeled data, as well as its similarity to the labeled set. Interestingly, Pre-
trained Distillation is more robust to these variations in the transfer set than standard distillation.

Finally, in order to gain insight into the interaction between LM pre-training and task-specific distil-
lation, we sequentially apply these operations on the same dataset. In this experiment, chaining the
two operations performs better than any one of them applied in isolation, despite the fact that a single
dataset was used for both steps. This compounding effect is surprising, indicating that pre-training
and distillation are learning complementary aspects of the data.

Given the effectiveness of LM pre-training on compact architectures, we will make our 24 pre-
trained miniature BERT models publicly available in order to accelerate future research.

2 PROBLEM STATEMENT

Our high-level goal is to build accurate models which fit a given memory and latency budget. There
are many aspects to explore: the parametric form of the compact model (architecture, number of
parameters, trade-off between number of hidden layers and embedding size), the training data (size,
distribution, presence or absence of labels, training objective), etc. Since an exhaustive search over
this space is impractical, we fix the model architecture to bidirectional Transformers, known to be
suitable for a wide range of NLP tasks (Vaswani et al., 2017; Devlin et al., 2018). The rest of this
section elaborates on the training resources we assume to have at our disposal.

The teacher is a highly accurate but large model for an end task, that does not meet the resource
constraints. Prior work on distillation often makes use of an ensemble of networks (Hinton et al.,
2015). For faster experimentation, we use a single teacher, without making a statement about the
best architectural choice. In Section 4, the teacher is pre-trained BERTBASE fine-tuned on labeled
end-task data. In Section 6, we use BERTLARGE instead.

Students are compact models that satisfy resource constraints. Since model size qualifiers are rela-
tive (e.g., what is considered small in a data center can be impractically large on a mobile device),

2

Mobile User

Mobile User

Mobile User



H=128 H=256 H=512 H=768

L=2 4.4 9.7 22.8 39.2
L=4 4.8 11.3 29.1 53.4
L=6 5.2 12.8 35.4 67.5
L=8 5.6 14.4 41.7 81.7

L=10 6.0 16.0 48.0 95.9
L=12 6.4 17.6 54.3 110.1

(a) Millions of parameters

H=128 H=256 H=512 H=768

L=2 65.24 31.25 14.44 7.46
L=4 32.37 15.96 7.27 3.75
L=6 21.87 10.67 4.85 2.50
L=8 16.42 8.01 3.64 1.88

L=10 13.05 6.37 2.90 1.50
L=12 11.02 5.35 2.43 1.25

(b) Relative speedup wrt BERTLARGE on TPU v2

Table 1: Student models with various numbers of transformer layers (L) and hidden embedding sizes (H).
Latency is computed on Cloud TPUs with batch size 1 and sequence length 512. For readability, we focus
on five models (underlined) for most figures: Tiny (L=2, H=128), Mini (L=4, H=256), Small (L=4, H=512),
Medium (L=8, H=512), and Base (L=12, H=768).

we investigate an array of 24 model sizes, from our TransformerTINY (4m parameters) all the way up
to TransformerBASE (110m parameters)1. The student model sizes and their relative speed-up com-
pared to the BERTLARGE teacher can be found in Table 1. Interested readers can situate themselves
on this spectrum based on their resource constraints. For readability, most plots show a selection of
5 models, but we verify that our conclusions hold for all 24.

Labeled data (DL) is a set of N training examples {(x1, y1), ..., (xN , yN )}, where xi is an input
and yi is a label. For most NLP tasks, labeled sets are hard to produce and thus restricted in size.

Unlabeled transfer data (DT ) is a set ofM input examples of the form {x′1, ..., x′M} sampled from
a distribution that is similar to but possibly not identical to the input distribution of the labeled set.
During distillation, the teacher transfers knowledge to the student by exposing its label predictions
for instances x′m. DT can also include the input portion of labeled data DL instances. Due to the
lack of true labels, such sets are generally easier to produce and consequently larger than labeled
ones. Note, however, that task-relevant input text is not readily available for key tasks requiring
paired texts such as natural language inference and question answering, as well as domain-specific
dialog understanding. In addition, for deployed systems, input data distribution shifts over time and
existing unlabeled data becomes stale (Kim et al., 2017).

Unlabeled language model data (DLM ) is a collection of natural language texts that enable un-
supervised learning of text representations. We use it for unsupervised pre-training with a masked
language model objective (Devlin et al., 2018). Because no labels are needed and strong domain
similarity is not required, these corpora are often vast, containing thousands of millions of words.

The distinction between the three types of datasets is strictly functional. Note they are not necessarily
disjunct. For instance, the same corpus that forms the labeled data can also be part of the unlabeled
transfer set, after its labels are discarded. Similarly, corpora that are included in the transfer set can
also be used as unlabeled LM data.

3 PRE-TRAINED DISTILLATION

Pre-trained Distillation (PD) (Figure 1) is a general, yet simple algorithm for building compact
models that can leverage all the resources enumerated in Section 2. It consists of a sequence of three
standard training operations that can be applied to any choice of architecture:

1. Pre-training on DLM . A compact model is trained with a masked LM objective (Devlin
et al., 2018), capturing linguistic phenomena from a large corpus of natural language texts.

2. Distillation on DT . This well-read student is now prepared to take full advantage of the
teacher expertise, and is trained on the soft labels (predictive distribution) produced by the
teacher. As we will show in Section 6.2, randomly initialized distillation is constrained by
the size and distribution of its unlabeled transfer set. However, the previous pre-training
step mitigates to some extent the negative effects caused by an imperfect transfer set.

3. (Optional) fine-tuning on DL. This step makes the model robust to potential mismatches
between the distribution of the transfer and labeled sets. We will refer to the two-step
algorithm as PD, and to the three-step algorithm as PDF.

1Note that our TransformerBASE and BERTBASE in Devlin et al. (2018) have the same architecture. We use
the former term for clarity, since not all students in Section 6 are pre-trained.
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Model Step 1 (DLM ) Step 2 (DT = DL) Architecture-agnostic

PD (our work) LM pre-training KD 3
Sun et al. (2019a) BERTBASE truncated Patient-KD 7
Sanh (2019) BERTBASE truncated + LM-KD Fine-tuning 7

Table 2: Training Strategies that build compact models by applying language model (LM) pre-
training before knowledge distillation (KD). The first two rows apply distillation on task data. The
third row applies distillation with an LM objective on general-domain data.

Model SST-2 MRPC QQP MNLI QNLI RTE Meta
(acc) (f1/acc) (f1/acc) (acc m/mm) (acc) (acc) Score

te
st

TF (baseline) 90.7 85.9/80.2 69.2/88.2 80.4/79.7 86.7 63.6 80.5
PF (baseline) 92.5 86.8/81.8 70.1/88.5 81.8/81.1 87.9 64.2 81.6
PD (our work) 91.8 86.8/81.7 70.4/88.9 82.8/82.2 88.9 65.3 82.1
Sun et al. (2019a) 92.0 85.0/79.9 70.7/88.9 81.5/81.0 89.0 65.5 81.7

de
v

PF (baseline) 91.1 87.9/82.5 86.6/90.0 81.1/81.7 87.8 63.0 82.8
PD (our work) 91.1 89.4/84.9 87.4/90.7 82.5/83.4 89.4 66.7 84.4
Sanh (2019) 92.7 88.3/82.4 87.7/90.6 81.6/81.1 85.5 60.0 82.3

Table 3: Model Quality. All students are 6/768 BERT models, trained by 12/768 BERT teachers.
Concurrent results are cited as reported by their authors. Our dev results are averaged over 5 runs.
Our test results are evaluated on the GLUE server, using the model that performed best on dev.
For anchoring, we also provide our results for MLM pre-training followed by fine-tuning (PF) and
cite results from Sun et al. (2019a) for BERTBASE truncated and fine-tuned (TF). The meta score is
computed on 6 tasks only, and is therefore not directly comparable to the GLUE leaderboard.

Figure 3: Pre-trained Distillation (PD) and concurrent work on model compression.

While we are treating our large teachers as black boxes, it is worth noting that they are produced by
pre-training and fine-tuning. Since the teacher could potentially transfer the knowledge it has ob-
tained via pre-training to the student through distillation, it is a priori unclear whether pre-training
the student would bring additional benefits. As Section 6.2 shows, pre-training students is surpris-
ingly important, even when millions of samples are available for transfer.

4 COMPARISON TO CONCURRENT WORK

There are concurrent efforts to ours aiming to leverage both pre-training and distillation in the con-
text of building compact models. Though inspired by the two-stage pre-training+fine-tuning ap-
proach that enabled deep-and-wide architectures to advance the state-of-the-art in language under-
standing, they depart from this traditional method in several key ways.

Patient Knowledge Distillation (Sun et al., 2019a) initializes a student from the bottom layers of
a deeper pre-trained model, then performs task-specific patient distillation. The training objective
relies not only on the teacher output, but also on its intermediate layers, thus making assumptions
about the student and teacher architectures. In a parallel line of work, DistilBert (Sanh, 2019) applies
the same truncation-based initialization method for the student, then continues its LM pre-training
via distillation from a more expensive LM teacher, and finally fine-tunes on task data. Its downside
is that LM distillation is computationally expensive, as it requires a softmax operation over the entire
vocabulary to compute the expensive LM teacher’s predictive distribution. A common limitation in
both studies is that the initialization strategy constrains the student to the teacher embedding size.
Table 2 summarizes the differences between concurrent work and Pre-trained Distillation (PD).

To facilitate direct comparison, in this section we perform an experiment with the same model
architecture, sizes and dataset settings used in the two studies mentioned above. We perform Pre-
trained Distillation on a 6-layer BERT student with task supervision from a 12-layer BERTBASE
teacher, using embedding size 768 for both models. For distillation, our transfer set coincides with
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Labeled data

Compact model

Basic Training

(a) Basic Training

Large Teacher

Unlabeled
transfer data

Compact model

Distillation

(b) Distillation

Labeled data

Compact model

Unlabeled
LM data Pre-training

Fine-tuning

(c) Pre-training+Fine-tuning (PF)

Figure 4: Baselines for building compact models, used for analysis (Section 6).

the labeled set (DT =DL). Table 3 reports results on the 6 GLUE tasks selected by Sun et al. (2019a)
and shows that, on average, PD performs best. For anchoring, we also provide quality numbers for
pre-training+fine-tuning (PF), which is surprisingly competitive to the more elaborate alternatives
in this setting where DT is not larger than DL. Remarkably, PF does not compromise generality
or simplicity for quality. Its downside is, however, that it cannot leverage unlabeled task data and
teacher model predictions.

5 ANALYSIS SETTINGS

Given these positive results, we aim to gain more insight into Pre-trained Distillation. We perform
extensive analyses on two orthogonal axes—model sizes and properties of unlabeled data, thus de-
parting from the settings used in Section 4.

All our models follow the Transformer architecture (Vaswani et al., 2017) and input processing
used in BERT (Devlin et al., 2018). We denote the number of hidden layers as L and the hidden
embedding size as H , and refer to models by their L/H dimensions. We always fix the number
of self-attention heads to H/64 and the feed-forward/filter size to 4H . The end-task models are
obtained by stacking a linear classifier on top of the Transformer architectures.

The teacher, BERTLARGE, has dimensions 24L/1024H and 340M parameters. We experiment with
24 student models, with sizes and relative latencies listed in Table 1. The most expensive student,
TransformerBASE, is 3 times smaller and 1.25 times faster than the teacher; the cheapest student,
TransformerSMALL, is 77 times smaller and 65 times faster. For readability, we report results on a
selection of 5 students, but verify that all conclusions hold across the entire 24-model grid.

5.1 ANALYSIS BASELINES

We select three baselines for Pre-trained Distillation that can provide insights into the contributions
made by each of its constituent operations.

Basic Training (Figure 4a) is the standard supervised learning method: a compact model is trained
directly on the labeled set.

Knowledge Distillation (Figure 4b) (Bucilă et al., 2006; Hinton et al., 2015) (or simply “distil-
lation”) transfers information from a highly-parameterized and accurate teacher model to a more
compact and thus less expressive student. For classification tasks, distillation exposes the student to
soft labels, namely the class probabilities produced by the teacher pl = softmax(zl/T ), where pl is
the output probability for class l, zl is the logit for class l, and T is a constant called temperature
that controls the smoothness of the output distribution. The softness of the labels enables better
generalization than the gold hard labels. For each end task, we train: (i) a teacher obtained by
fine-tuning pre-trained BERTLARGE (24L/1024H) on the labeled dataset (note teachers do not learn
from the transfer set), and (ii) 24 students of various sizes. Students are always distilled on the soft
labels produced by the teacher with a temperature of 12.

Pre-training+Fine-tuning (Figure 4c) (Dai & Le, 2015; Devlin et al., 2018), or simply PF, lever-
ages large unlabeled general-domain corpora to pre-train models that can be fine-tuned for end tasks.

2While Hinton et al. (2015) show that tuning the temperature could increase performance, we did not
observe notable gains. They also propose using a weighted sum of the soft and hard labels, but this approach
cannot be applied directly in our set-up, since not all instances in our unlabeled transfers set have hard labels.
Our optional final fine-tuning step similarly up-weights the hard labels in the labeled set.
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Following BERT, we perform pre-training with the masked LM (MLM) and next sentence objectives
(collectively referred to as MLM+ from here on). The resulting model is fine-tuned on end-task la-
beled data. While pre-training large models has been shown to provide substantial benefits, we are
unaware of any prior work systematically studying its effectiveness on compact architectures.

5.2 ANALYSIS TASKS AND DATASETS

Labeled Data (DL) Unlabeled Transfer Data (DT )

MNLI (390k) NLI* (1.3m samples)
RTE (2.5k) NLI* (1.3m samples)
SST-2 (68k) Movie Reviews* (1.7m samples)
Book Reviews (50k) Book Reviews* (8m samples)

Table 4: Datasets used for analysis. A star indicates that
hard labels are discarded. NLI* refers to the collection of
MNLI (390k), SNLI (570k) and QQP (400k). The reviews
datasets are part of Amazon Product Data. Unless otherwise
stated, DLM consists of BookCorpus & English Wikipedia.

The tasks and associated datasets are sum-
marized in Table 4.

Sentiment classification aims to classify
text according to the polarities of opin-
ions it contains. We perform 3-way doc-
ument classification on Amazon Book Re-
views (He & McAuley, 2016). Its consid-
erable size (8m) allows us to closely fol-
low the standard distillation setting, where
there is a large number of unlabeled exam-
ples for transfer. Additionally, we test our
algorithm on SST-2 (Socher et al., 2013),
which is a binary sentence classification task, and our results are directly comparable with prior
work on the GLUE leaderboard (Wang et al., 2018). We use whole documents from Amazon Movie
Reviews (1.7m) as unlabeled transfer data (note that SST-2 consists of single sentences).

Natural language inference involves classifying pairs of sentences (a premise and a hypothesis) as
entailment, contradiction, or neutral. This task is representative of the scenario in which proxy data
is non-trivial to gather (Gururangan et al., 2018). We chose MNLI (Williams et al., 2018) as our
target dataset. Since strictly in-domain data is difficult to obtain, we supplement DT with two other
sentence-pair datasets: SNLI (Bowman et al., 2015) and QQP (Chen et al., 2018).

Textual entailment is similar to NLI, but restricted to binary classification (entailment vs non-
entailment). The most popular RTE dataset (Bentivogli et al., 2009) is two orders of magnitude
smaller than MNLI and offers an extreme test of robustness to the amount of transfer data.

6 ANALYSIS

In this section, we conduct experiments that help us understand why Pre-trained Distillation is suc-
cessful and how to attribute credit to its constituent operations.

6.1 THERE ARE NO SHORTCUTS: WHY FULL PRE-TRAINING IS NECESSARY

As later elaborated in Section 7, earlier efforts to leverage pre-training in the context of compact
models simply feed pre-trained (possibly contextual) input representations into randomly-initialized
students (Hu et al., 2018; Chia et al., 2018; Tang et al., 2019). Concurrent work initializes shallow-
and-wide students from the bottom layers of their deeper pre-trained counterparts (Yang et al.,
2019a; Sun et al., 2019a). The experiments below indicate these strategies are suboptimal, and
that LM pre-training is necessary in order to unlock the full student potential.

Is it enough to pre-train word embeddings? No. In order to prove that pre-training Transformer
layers is important, we compare two flavors of Pre-trained Distillation3: PD with pre-trained word
embeddings and PD with pre-trained word embeddings and Transformer layers. We produce word-
piece embeddings by pre-training one-layer Transformers for each embedding size. We then discard
the single Transformer layer and keep the embeddings to initialize our students.

For MNLI (Figure 5), less than 24% of the gains PD brings over distillation can be attributed to the
pre-trained word embeddings (for TransformerTINY, this drops even lower, to 5%). The rest of the
benefits come from additionally pre-training the Transformer layers.

3Note that, for both flavors of PD, none of the student parameters are frozen; the word embeddings do get
updated during distillation.
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Tiny
2L/128H

Mini
4L/256H

Small
4L/512H

Medium
8L/512H

Base
12L/768H

60

70

80

MNLI

PD (MLM pre-training)
PD (from 12-layer model)
PD (word embeddings)
Distillation

Figure 5: Pre-training outperforms truncation.
Students initialized via LM pre-training (green) out-
perform those initialized from the bottom layers of
12-layer pre-trained models (gray). When only word
embeddings are pre-trained (red), performance is de-
graded even further.
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68
12

/7
68

SST-2

PD Teacher
PF Basic training
Distillation

Figure 6: Depth outweighs width when models are
pre-trained (PD and PF), as emphasized by the sharp
drops in the plot. For instance, the 6L/512H (35.4m
parameters) model outperforms the 2L/768H model
(39.2m parameters). Randomly initialized models
take poor advantage of extra parameters.

Is it worse to truncate deep pre-trained models? Yes, especially for shallow students. Given
that pre-training is an expensive process, an exhaustive search over model sizes in the pursuit of
the one that meets a certain performance threshold can be impractical. Instead of pre-training all
(number of layers, embedding size) combinations of students, one way of short-cutting the process
is to pre-train a single deep (e.g. 12-layer) student for each embedding size, then truncate it at
various heights. Figure 5 shows that this can be detrimental especially to shallow architectures;
TransformerTINY loses more than 73% of the pre-training gains over distillation. As expected, losses
fade away as the number of layers increases.

What is the best student for a fixed parameter size budget? As a rule of thumb, prioritize depth
over width, especially with pre-trained students. Figure 6 presents a comparison between 24 student
model architectures on SST-2, demonstrating how well different students utilize model capacity.
They are sorted first by the hidden size, then by the number of layers. This roughly corresponds to a
monotonic increase in the number of parameters, with a few exceptions for the largest students. The
quality of randomly initialized students (i.e. basic training and distillation) is closely correlated with
the number of parameters. With pre-training (i.e. PD and PF), we observe two intuitive findings: (1)
pre-trained models are much more effective at using more parameters, and (2) pre-trained models
are particularly efficient at utilizing depth, as indicated by the sharp drops in performance when
moving to wider but shallower models.

This is yet another argument against initialization via truncation: for instance, truncating the bottom
two layers of BERTBASE would lead to a suboptimal distribution of parameters: the 2L/768H model
(39.2m parameters) is dramatically worse than e.g. 6L/512H (35.4m parameters).

6.2 UNDER THE HOOD: DISSECTING PRE-TRAINED DISTILLATION

In the previous section, we presented empirical evidence for the importance of the initial LM pre-
training step. In this section, we show that distillation brings additional value, especially in the
presence of a considerably-sized transfer set, and that fine-tuning ensures robustness when the unla-
beled data diverges from the labeled set.

Comparison to analysis baselines First, we quantify how much Pre-trained Distillation improves
upon its constituent operations applied in isolation. We compare it against the baselines established
in Section 5.1 (basic training, distillation, and pre-training+fine-tuning) on the three NLP tasks
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Amazon Book Reviews

Figure 7: Comparison against analysis baselines. Pre-trained Distillation out-performs all baselines: pre-
training+fine-tuning, distillation, and basic training over five different student sizes. Pre-training is performed
on a large unlabeled LM set (BookCorpus & English Wikipedia). Distillation uses the task-specific unlabeled
transfer sets listed in Table 4. Teachers are pre-trained BERTLARGE, fine-tuned on labeled data.

described in Section 5.2. We use the BookCorpus (Zhu et al., 2015) and English Wikipedia as our
unlabeled LM set, following the same pre-training procedure as Devlin et al. (2018).

Results in Figure 7 confirm that PD outperforms these baselines, with particularly remarkable results
on the Amazon Book Reviews corpus, where TransformerMINI recovers the accuracy of the teacher
at a 31x decrease in model size and 16x speed-up. Distillation achieves the same performance with
TransformerBASE, which is 10x larger than TransformerMINI. Thus PD can compress the model more
effectively than distillation. On RTE, Pre-trained Distillation improves TransformerTINY by more
than 5% absolute over the closest baseline (pre-training+fine-tuning) and is the only method to
recover teacher accuracy with TransformerBASE.

It is interesting to note that the performance of the baseline systems is closely related to the size of
the transfer set. For the sentence-pair tasks such as MNLI and RTE, where the size of the transfer set
is moderate (1.3m) and slightly out-of-domain (see Table 4), pre-training+fine-tuning out-performs
distillation across all student sizes, with an average of 12% for MNLI and 8% on RTE. Interestingly,
the order is inverted on Amazon Book Reviews, where the large transfer set (8m) is strictly in-
domain: distillation is better than pre-training+fine-tuning by an average of 3%. On the other
hand, Pre-trained Distillation is consistently best in all cases. We will examine the robustness of
Pre-trained Distillation in the rest of the section.

Robustness to transfer set size It is generally accepted that distillation is reliant upon a large
transfer set. For instance, distillation for speech recognition is performed on hundreds of millions
of data points (Li et al., 2014; Hinton et al., 2015).

We reaffirm this statement through experiments on Amazon Book Reviews in Figure 8, given that
Amazon Book Reviews have the biggest transfer set. Distillation barely recovers teacher accuracy
with the largest student (TransformerBASE), using the entire 8m transfer set. When there is only 1m
transfer set, the performance is 4% behind the teacher model. In contrast, PD achieves the same
performance with TransformerMINI on 5m instances. In other words, PD can match the teacher
model with 10x smaller model and 1.5x less transfer data, compared to distillation.

Robustness to domain shift To the best of our knowledge, there is no prior work that explicitly
studies how distillation is impacted by the mismatch between training and transfer sets (which we
will refer to as domain shift). Many previous distillation efforts focus on tasks where the two sets
come from the same distribution (Romero et al., 2014; Hinton et al., 2015), while others simply
acknowledge the importance of and strive for a close match between them (Bucilă et al., 2006).

We provide empirical evidence that out-of-domain data degrades distillation and that our algorithm
is more robust to mismatches between DL and DT . We measure domain shift using the Spearman
rank correlation coefficient (which we refer to as Spearman or simply S), introduced as a general
metric in (Spearman, 1904) and first used as a corpus similarity metric in (Johansson et al., 1989).
To compute corpus similarity, we follow the procedure described in (Kilgarriff & Rose, 1998): for
two datasets X and Y , we compute the corresponding frequency ranks FX and FY of their most
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Figure 8: Robustness to transfer set size. We
verify that distillation requires a large transfer set:
8m instances are needed to match the performance
of the teacher using TransformerBASE. PD achieves
the same performance with TransformerMINI, on a 5m
transfer set (10x smaller, 13x faster, 1.5x less data).
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Figure 9: Robustness to domain shift in transfer
set. By keeping |DT | fixed (1.7m) and varying the
correlation between DL and DT (denoted by S), we
show that distillation requires an in-domain transfer
set. PD and PD-F are more robust to transfer set do-
main.

common n = 100 words. For each of these words, the difference d between ranks in FX and FY is
computed. The final statistic is given by the following formula: 1−

∑100
i=1 d

2
i /(n(n2 − 1)).

To measure the effect of domain shift, we again experiment on the Amazon Book Reviews task.
Instead of varying the size of the transfer sets, this time we keep size fixed (to 1.7m documents)
and vary the source of the unlabeled text used for distillation. Transfer set domains vary from not
task-related (paragraphs from Wikipedia with S=0.43), to reviews for products of unrelated category
(electronics reviews with S=0.52), followed by reviews from a related category (movie reviews with
S=0.76), and finally in-domain book reviews (S=1.0). Results in Figure 9 show a direct correlation
between accuracy and the Spearman coefficient for both distillation and PD. When S drops to 0.43,
distillation on DT is 1.8% worse than basic training on DL, whereas PD suffers a smaller loss over
pre-training+fine-tuning, and a gain of about 1.5% when a final fine-tuning step is added. When
reviews from an unrelated product are used as a transfer set (S=0.52), PD obtains a much larger gain
from learning from the teacher, compared to distillation.

6.3 BETTER TOGETHER: THE COMPOUND EFFECT OF PRE-TRAINING AND DISTILLATION
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4L/256H

Small
4L/512H

Medium
8L/512H
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12L/768H

60

65

70
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80
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PD (DLM = DT = NLI*)
PF (DLM = NLI*)
Distillation (DT = NLI*)

Figure 10: Pre-training complements distillation.
PD outperforms the baselines even when we pre-train
and distill on the same dataset (DLM = DT = NLI*).

We investigate the interaction between pre-
training and distillation by applying them se-
quentially on the same data. We compare the
following two algorithms: Pre-training+Fine-
tuning with DLM = X and Pre-trained Distil-
lation with DLM = DT = X . Any additional
gains that the latter brings over the former must
be attributed to distillation, providing evidence
that the compound effect still exists.

For MNLI, we setDLM =DT = NLI* and con-
tinue the experiment above by taking the stu-
dents pre-trained on DLM = NLI* and distill-
ing them on DT = NLI*. As shown in Figure
10, PD is better than PF by 2.2% on average
over all student sizes. Note that even when pre-
training and then distilling on the same data,
PD outperforms the two training strategies ap-
plied in isolation. The two methods are thus
learning different linguistic aspects, both useful for the end task.
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7 RELATED WORK

Pre-training Decades of research have shown that unlabeled text can help learn language repre-
sentations. Word embeddings were first used (Mikolov et al., 2013; Pennington et al., 2014), while
subsequently contextual word representations were found more effective (Peters et al., 2018). Most
recently, research has shifted towards fine-tuning methods (Radford et al., 2018; Devlin et al., 2018;
Radford et al., 2019), where entire large pre-trained representations are fine-tuned for end tasks
together with a small number of task-specific parameters. While feature-based unsupervised rep-
resentations have been successfully used in compact models (Johnson & Zhang, 2015; Gururangan
et al., 2019), inter alia, the pretraining+fine-tuning approach has not been studied in depth for such
small models.

Learning compact models In this work we built on model compression (Bucilă et al., 2006) and
its variant knowledge distillation (Hinton et al., 2015). Other related efforts introduced ways to
transfer more information from a teacher to a student model, by sharing intermediate layer activa-
tions (Romero et al., 2014; Yim et al., 2017; Sun et al., 2019a). We experimented with related
approaches, but found only slight gains which were dominated by the gains from pre-training and
were not complementary. Prior works have also noted the unavailability of in-domain large-scale
transfer data and proposed the use of automatically generated pseudo-examples (Bucilă et al., 2006;
Kimura et al., 2018). Here we showed that large-scale general domain text can be successfully
used for pre-training instead. A separate line of work uses pruning or quantization to derive smaller
models (Han et al., 2016; Gupta et al., 2015). Gains from such techniques are expected to be
complementary to PD.

Distillation with unsupervised pre-training Early efforts to leverage both unsupervised pre-
training and distillation provide pre-trained (possibly contextual) word embeddings as inputs to
students, rather than pre-training the student stack. For instance, Hu et al. (2018) use ELMo em-
beddings, while (Chia et al., 2018; Tang et al., 2019) use context-independent word embeddings.
Concurrent work initializes Transformer students from the bottom layers of a 12-layer BERT model
(Yang et al., 2019a; Sun et al., 2019a; Sanh, 2019). The latter continues student LM pre-training via
distillation from a more expensive LM teacher. For a different purpose of deriving a single model
for multiple tasks through distillation, Clark et al. (2019) use a pre-trained student model of the
same size as multiple teacher models. However, none of the prior work has analyzed the impact of
unsupervised learning for students in relation to the model size and domain of the transfer set.

8 CONCLUSION

We conducted extensive experiments to gain understanding of how knowledge distillation and the
pre-training+fine-tuning algorithm work in isolation, and how they interact. We made the finding
that their benefits compound, and unveiled the power of Pre-trained Distillation, a simple yet effec-
tive method to maximize the utilization of all available resources: a powerful teacher, and multiple
sources of data (labeled sets, unlabeled transfer sets, and unlabeled LM sets).
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