|
import llama |
|
from typing import Dict, List, Any |
|
|
|
MODEL = 'decapoda-research/llama-7b-hf' |
|
|
|
|
|
|
|
|
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.tokenizer = llama.LLaMATokenizer.from_pretrained(MODEL) |
|
self.model = llama.LLaMAForCausalLM.from_pretrained(MODEL, low_cpu_mem_usage=True) |
|
self.model.to('cuda') |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", None) |
|
|
|
input_ids = self.tokenizer(inputs, return_tensors="pt", add_special_tokens=False).input_ids.cuda() |
|
|
|
if parameters is not None: |
|
outputs = self.model.generate(input_ids, **parameters) |
|
else: |
|
outputs = self.model.generate(input_ids) |
|
|
|
prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
return [{"generated_text": prediction}] |
|
|