llama-7b-custom / llama /convert_llama_weights_to_hf.py
shalomma's picture
llama
a4cfa39
import argparse
import json
import os
import shutil
import torch
"""
Sample usage:
```
python src/transformers/models/llama/convert_llama_weights_to_hf.py \
--input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path
```
Thereafter, models can be loaded via:
```
tokenizer = transformers.LLaMATokenizer.from_pretrained("/output/path/tokenizer/")
model = transformers.LLaMAForCausalLM.from_pretrained("/output/path/llama-7b/")
```
"""
INTERMEDIATE_SIZE_MAP = {
"7B": 11008,
"13B": 13824,
"30B": 17920,
"65B": 22016,
}
NUM_SHARDS = {
"7B": 1,
"13B": 2,
"30B": 4,
"65B": 8,
}
def read_json(path):
with open(path, "r") as f:
return json.loads(f.read())
def write_json(text, path):
with open(path, "w") as f:
f.write(json.dumps(text))
def write_model(model_path, input_base_path, model_size):
assert model_size in INTERMEDIATE_SIZE_MAP
os.makedirs(model_path, exist_ok=True)
params = read_json(os.path.join(input_base_path, "params.json"))
num_shards = NUM_SHARDS[model_size]
n_layers = params["n_layers"]
n_heads = params["n_heads"]
n_heads_per_shard = n_heads // num_shards
dim = params["dim"]
dims_per_head = dim // n_heads
# Load weights
if model_size == "7B":
# Not shared
# (The sharded implementation would also work, but this is simpler.)
loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
else:
# Sharded
loaded = [
torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu")
for i in range(num_shards)
]
param_count = 0
index_dict = {"weight_map": {}}
for layer_i in range(n_layers):
filename = "pytorch_model-{:05d}-of-{:05d}.bin".format(
layer_i,
n_layers + 1,
)
if model_size == "7B":
# Unsharded
state_dict = {
f"model.decoder.layers.{layer_i}.self_attn.q_proj.weight": loaded[
f"layers.{layer_i}.attention.wq.weight"
],
f"model.decoder.layers.{layer_i}.self_attn.k_proj.weight": loaded[
f"layers.{layer_i}.attention.wk.weight"
],
f"model.decoder.layers.{layer_i}.self_attn.v_proj.weight": loaded[
f"layers.{layer_i}.attention.wv.weight"
],
f"model.decoder.layers.{layer_i}.self_attn.o_proj.weight": loaded[
f"layers.{layer_i}.attention.wo.weight"
],
f"model.decoder.layers.{layer_i}.feed_forward.w1.weight": loaded[
f"layers.{layer_i}.feed_forward.w1.weight"
],
f"model.decoder.layers.{layer_i}.feed_forward.w2.weight": loaded[
f"layers.{layer_i}.feed_forward.w2.weight"
],
f"model.decoder.layers.{layer_i}.feed_forward.w3.weight": loaded[
f"layers.{layer_i}.feed_forward.w3.weight"
],
f"model.decoder.layers.{layer_i}.attention_norm.weight": loaded[
f"layers.{layer_i}.attention_norm.weight"
],
f"model.decoder.layers.{layer_i}.ffn_norm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"],
}
else:
# Sharded
state_dict = {
f"model.decoder.layers.{layer_i}.attention_norm.weight": loaded[0][
f"layers.{layer_i}.attention_norm.weight"
],
f"model.decoder.layers.{layer_i}.ffn_norm.weight": loaded[0][f"layers.{layer_i}.ffn_norm.weight"],
}
state_dict[f"model.decoder.layers.{layer_i}.self_attn.q_proj.weight"] = torch.cat(
[
loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)
for i in range(num_shards)
],
dim=0,
).reshape(dim, dim)
state_dict[f"model.decoder.layers.{layer_i}.self_attn.k_proj.weight"] = torch.cat(
[
loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim)
for i in range(num_shards)
],
dim=0,
).reshape(dim, dim)
state_dict[f"model.decoder.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(
[
loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim)
for i in range(num_shards)
],
dim=0,
).reshape(dim, dim)
state_dict[f"model.decoder.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(
[loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1
)
state_dict[f"model.decoder.layers.{layer_i}.feed_forward.w1.weight"] = torch.cat(
[loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0
)
state_dict[f"model.decoder.layers.{layer_i}.feed_forward.w2.weight"] = torch.cat(
[loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1
)
state_dict[f"model.decoder.layers.{layer_i}.feed_forward.w3.weight"] = torch.cat(
[loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0
)
for k, v in state_dict.items():
index_dict["weight_map"][k] = filename
param_count += v.numel()
torch.save(state_dict, os.path.join(model_path, filename))
filename = "pytorch_model-{:05d}-of-{:05d}.bin".format(
n_layers,
n_layers + 1,
)
if model_size == "7B":
# Unsharded
state_dict = {
"model.decoder.embed_tokens.weight": loaded["tok_embeddings.weight"],
"model.decoder.norm.weight": loaded["norm.weight"],
"lm_head.weight": loaded["output.weight"],
}
else:
state_dict = {
"model.decoder.norm.weight": loaded[0]["norm.weight"],
"model.decoder.embed_tokens.weight": torch.cat(
[loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1
),
"lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0),
}
for k, v in state_dict.items():
index_dict["weight_map"][k] = filename
param_count += v.numel()
torch.save(state_dict, os.path.join(model_path, filename))
# Write configs
index_dict["metadata"] = {"total_size": param_count * 2}
write_json(index_dict, os.path.join(model_path, "pytorch_model.bin.index.json"))
config_out = {
"architectures": ["LLaMAForCausalLM"],
"bos_token_id": 0,
"eos_token_id": 1,
"hidden_act": "silu",
"hidden_size": params["dim"],
"intermediate_size": INTERMEDIATE_SIZE_MAP[model_size],
"initializer_range": 0.02,
"max_sequence_length": 2048,
"model_type": "llama",
"num_attention_heads": params["n_heads"],
"num_hidden_layers": params["n_layers"],
"pad_token_id": -1,
"rms_norm_eps": params["norm_eps"],
"torch_dtype": "float16",
"transformers_version": "4.27.0.dev0",
"use_cache": True,
"vocab_size": 32000,
}
write_json(
config_out,
os.path.join(model_path, "config.json"),
)
generation_config = {
"_from_model_config": True,
"bos_token_id": 0,
"eos_token_id": 1,
"pad_token_id": -1,
"transformers_version": "4.27.0.dev0",
}
write_json(
generation_config,
os.path.join(model_path, "generation_config.json"),
)
def write_tokenizer(tokenizer_path, input_tokenizer_path):
os.makedirs(tokenizer_path, exist_ok=True)
write_json({}, os.path.join(tokenizer_path, "special_tokens_map.json"))
write_json(
{
"bos_token": "",
"eos_token": "",
"model_max_length": int(1e30),
"tokenizer_class": "LLaMATokenizer",
"unk_token": "",
},
os.path.join(tokenizer_path, "tokenizer_config.json"),
)
shutil.copyfile(input_tokenizer_path, os.path.join(tokenizer_path, "tokenizer.model"))
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--input_dir",
help="Location of LLaMA weights, which contains tokenizer.model and model folders",
)
parser.add_argument(
"--model_size",
choices=["7B", "13B", "30B", "65B"],
)
parser.add_argument(
"--output_dir",
help="Location to write HF model and tokenizer",
)
args = parser.parse_args()
write_model(
model_path=os.path.join(args.output_dir, "llama-{}".format(args.model_size).lower()),
input_base_path=os.path.join(args.input_dir, args.model_size),
model_size=args.model_size,
)
write_tokenizer(
tokenizer_path=os.path.join(args.output_dir, "tokenizer"),
input_tokenizer_path=os.path.join(args.input_dir, "tokenizer.model"),
)
if __name__ == "__main__":
main()