|
import argparse |
|
import json |
|
import os |
|
import shutil |
|
|
|
import torch |
|
|
|
|
|
""" |
|
Sample usage: |
|
|
|
``` |
|
python src/transformers/models/llama/convert_llama_weights_to_hf.py \ |
|
--input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path |
|
``` |
|
|
|
Thereafter, models can be loaded via: |
|
|
|
``` |
|
tokenizer = transformers.LLaMATokenizer.from_pretrained("/output/path/tokenizer/") |
|
|
|
model = transformers.LLaMAForCausalLM.from_pretrained("/output/path/llama-7b/") |
|
``` |
|
""" |
|
|
|
INTERMEDIATE_SIZE_MAP = { |
|
"7B": 11008, |
|
"13B": 13824, |
|
"30B": 17920, |
|
"65B": 22016, |
|
} |
|
NUM_SHARDS = { |
|
"7B": 1, |
|
"13B": 2, |
|
"30B": 4, |
|
"65B": 8, |
|
} |
|
|
|
|
|
def read_json(path): |
|
with open(path, "r") as f: |
|
return json.loads(f.read()) |
|
|
|
|
|
def write_json(text, path): |
|
with open(path, "w") as f: |
|
f.write(json.dumps(text)) |
|
|
|
|
|
def write_model(model_path, input_base_path, model_size): |
|
assert model_size in INTERMEDIATE_SIZE_MAP |
|
os.makedirs(model_path, exist_ok=True) |
|
|
|
params = read_json(os.path.join(input_base_path, "params.json")) |
|
num_shards = NUM_SHARDS[model_size] |
|
n_layers = params["n_layers"] |
|
n_heads = params["n_heads"] |
|
n_heads_per_shard = n_heads // num_shards |
|
dim = params["dim"] |
|
dims_per_head = dim // n_heads |
|
|
|
|
|
if model_size == "7B": |
|
|
|
|
|
loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu") |
|
else: |
|
|
|
loaded = [ |
|
torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu") |
|
for i in range(num_shards) |
|
] |
|
param_count = 0 |
|
index_dict = {"weight_map": {}} |
|
for layer_i in range(n_layers): |
|
filename = "pytorch_model-{:05d}-of-{:05d}.bin".format( |
|
layer_i, |
|
n_layers + 1, |
|
) |
|
if model_size == "7B": |
|
|
|
state_dict = { |
|
f"model.decoder.layers.{layer_i}.self_attn.q_proj.weight": loaded[ |
|
f"layers.{layer_i}.attention.wq.weight" |
|
], |
|
f"model.decoder.layers.{layer_i}.self_attn.k_proj.weight": loaded[ |
|
f"layers.{layer_i}.attention.wk.weight" |
|
], |
|
f"model.decoder.layers.{layer_i}.self_attn.v_proj.weight": loaded[ |
|
f"layers.{layer_i}.attention.wv.weight" |
|
], |
|
f"model.decoder.layers.{layer_i}.self_attn.o_proj.weight": loaded[ |
|
f"layers.{layer_i}.attention.wo.weight" |
|
], |
|
f"model.decoder.layers.{layer_i}.feed_forward.w1.weight": loaded[ |
|
f"layers.{layer_i}.feed_forward.w1.weight" |
|
], |
|
f"model.decoder.layers.{layer_i}.feed_forward.w2.weight": loaded[ |
|
f"layers.{layer_i}.feed_forward.w2.weight" |
|
], |
|
f"model.decoder.layers.{layer_i}.feed_forward.w3.weight": loaded[ |
|
f"layers.{layer_i}.feed_forward.w3.weight" |
|
], |
|
f"model.decoder.layers.{layer_i}.attention_norm.weight": loaded[ |
|
f"layers.{layer_i}.attention_norm.weight" |
|
], |
|
f"model.decoder.layers.{layer_i}.ffn_norm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"], |
|
} |
|
else: |
|
|
|
state_dict = { |
|
f"model.decoder.layers.{layer_i}.attention_norm.weight": loaded[0][ |
|
f"layers.{layer_i}.attention_norm.weight" |
|
], |
|
f"model.decoder.layers.{layer_i}.ffn_norm.weight": loaded[0][f"layers.{layer_i}.ffn_norm.weight"], |
|
} |
|
state_dict[f"model.decoder.layers.{layer_i}.self_attn.q_proj.weight"] = torch.cat( |
|
[ |
|
loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim) |
|
for i in range(num_shards) |
|
], |
|
dim=0, |
|
).reshape(dim, dim) |
|
state_dict[f"model.decoder.layers.{layer_i}.self_attn.k_proj.weight"] = torch.cat( |
|
[ |
|
loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim) |
|
for i in range(num_shards) |
|
], |
|
dim=0, |
|
).reshape(dim, dim) |
|
state_dict[f"model.decoder.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat( |
|
[ |
|
loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim) |
|
for i in range(num_shards) |
|
], |
|
dim=0, |
|
).reshape(dim, dim) |
|
|
|
state_dict[f"model.decoder.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat( |
|
[loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1 |
|
) |
|
state_dict[f"model.decoder.layers.{layer_i}.feed_forward.w1.weight"] = torch.cat( |
|
[loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0 |
|
) |
|
state_dict[f"model.decoder.layers.{layer_i}.feed_forward.w2.weight"] = torch.cat( |
|
[loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1 |
|
) |
|
state_dict[f"model.decoder.layers.{layer_i}.feed_forward.w3.weight"] = torch.cat( |
|
[loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0 |
|
) |
|
|
|
for k, v in state_dict.items(): |
|
index_dict["weight_map"][k] = filename |
|
param_count += v.numel() |
|
torch.save(state_dict, os.path.join(model_path, filename)) |
|
|
|
filename = "pytorch_model-{:05d}-of-{:05d}.bin".format( |
|
n_layers, |
|
n_layers + 1, |
|
) |
|
if model_size == "7B": |
|
|
|
state_dict = { |
|
"model.decoder.embed_tokens.weight": loaded["tok_embeddings.weight"], |
|
"model.decoder.norm.weight": loaded["norm.weight"], |
|
"lm_head.weight": loaded["output.weight"], |
|
} |
|
else: |
|
state_dict = { |
|
"model.decoder.norm.weight": loaded[0]["norm.weight"], |
|
"model.decoder.embed_tokens.weight": torch.cat( |
|
[loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1 |
|
), |
|
"lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0), |
|
} |
|
|
|
for k, v in state_dict.items(): |
|
index_dict["weight_map"][k] = filename |
|
param_count += v.numel() |
|
torch.save(state_dict, os.path.join(model_path, filename)) |
|
|
|
|
|
index_dict["metadata"] = {"total_size": param_count * 2} |
|
write_json(index_dict, os.path.join(model_path, "pytorch_model.bin.index.json")) |
|
config_out = { |
|
"architectures": ["LLaMAForCausalLM"], |
|
"bos_token_id": 0, |
|
"eos_token_id": 1, |
|
"hidden_act": "silu", |
|
"hidden_size": params["dim"], |
|
"intermediate_size": INTERMEDIATE_SIZE_MAP[model_size], |
|
"initializer_range": 0.02, |
|
"max_sequence_length": 2048, |
|
"model_type": "llama", |
|
"num_attention_heads": params["n_heads"], |
|
"num_hidden_layers": params["n_layers"], |
|
"pad_token_id": -1, |
|
"rms_norm_eps": params["norm_eps"], |
|
"torch_dtype": "float16", |
|
"transformers_version": "4.27.0.dev0", |
|
"use_cache": True, |
|
"vocab_size": 32000, |
|
} |
|
write_json( |
|
config_out, |
|
os.path.join(model_path, "config.json"), |
|
) |
|
generation_config = { |
|
"_from_model_config": True, |
|
"bos_token_id": 0, |
|
"eos_token_id": 1, |
|
"pad_token_id": -1, |
|
"transformers_version": "4.27.0.dev0", |
|
} |
|
write_json( |
|
generation_config, |
|
os.path.join(model_path, "generation_config.json"), |
|
) |
|
|
|
|
|
def write_tokenizer(tokenizer_path, input_tokenizer_path): |
|
os.makedirs(tokenizer_path, exist_ok=True) |
|
write_json({}, os.path.join(tokenizer_path, "special_tokens_map.json")) |
|
write_json( |
|
{ |
|
"bos_token": "", |
|
"eos_token": "", |
|
"model_max_length": int(1e30), |
|
"tokenizer_class": "LLaMATokenizer", |
|
"unk_token": "", |
|
}, |
|
os.path.join(tokenizer_path, "tokenizer_config.json"), |
|
) |
|
shutil.copyfile(input_tokenizer_path, os.path.join(tokenizer_path, "tokenizer.model")) |
|
|
|
|
|
def main(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--input_dir", |
|
help="Location of LLaMA weights, which contains tokenizer.model and model folders", |
|
) |
|
parser.add_argument( |
|
"--model_size", |
|
choices=["7B", "13B", "30B", "65B"], |
|
) |
|
parser.add_argument( |
|
"--output_dir", |
|
help="Location to write HF model and tokenizer", |
|
) |
|
args = parser.parse_args() |
|
write_model( |
|
model_path=os.path.join(args.output_dir, "llama-{}".format(args.model_size).lower()), |
|
input_base_path=os.path.join(args.input_dir, args.model_size), |
|
model_size=args.model_size, |
|
) |
|
write_tokenizer( |
|
tokenizer_path=os.path.join(args.output_dir, "tokenizer"), |
|
input_tokenizer_path=os.path.join(args.input_dir, "tokenizer.model"), |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |