Upload handler.py
Browse files- handler.py +30 -0
handler.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import llama
|
2 |
+
from typing import Dict, List, Any
|
3 |
+
|
4 |
+
MODEL = 'decapoda-research/llama-7b-hf'
|
5 |
+
|
6 |
+
|
7 |
+
# MODEL = 'decapoda-research/llama-13b-hf'
|
8 |
+
# MODEL = 'decapoda-research/llama-30b-hf'
|
9 |
+
# MODEL = 'decapoda-research/llama-65b-hf'
|
10 |
+
|
11 |
+
class EndpointHandler():
|
12 |
+
def __init__(self, path=""):
|
13 |
+
self.tokenizer = llama.LLaMATokenizer.from_pretrained(MODEL)
|
14 |
+
self.model = llama.LLaMAForCausalLM.from_pretrained(MODEL, low_cpu_mem_usage=True, load_in_8bit=True)
|
15 |
+
self.model.to('cuda')
|
16 |
+
|
17 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
18 |
+
inputs = data.pop("inputs", data)
|
19 |
+
parameters = data.pop("parameters", None)
|
20 |
+
|
21 |
+
input_ids = self.tokenizer(inputs, return_tensors="pt", add_special_tokens=False).input_ids.cuda()
|
22 |
+
|
23 |
+
if parameters is not None:
|
24 |
+
outputs = self.model.generate(input_ids, **parameters)
|
25 |
+
else:
|
26 |
+
outputs = self.model.generate(input_ids)
|
27 |
+
|
28 |
+
prediction = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
29 |
+
|
30 |
+
return [{"generated_text": prediction}]
|