llama
Browse files- llama/__init__.py +57 -0
- llama/configuration_llama.py +111 -0
- llama/convert_llama_weights_to_hf.py +264 -0
- llama/modeling_llama.py +941 -0
- llama/tokenization_llama.py +209 -0
llama/__init__.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from transformers.utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_llama": ["LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP", "LLaMAConfig"],
|
21 |
+
"tokenization_llama": ["LLaMATokenizer"],
|
22 |
+
}
|
23 |
+
|
24 |
+
try:
|
25 |
+
if not is_torch_available():
|
26 |
+
raise OptionalDependencyNotAvailable()
|
27 |
+
except OptionalDependencyNotAvailable:
|
28 |
+
pass
|
29 |
+
else:
|
30 |
+
_import_structure["modeling_llama"] = [
|
31 |
+
"LLaMAForCausalLM",
|
32 |
+
"LLaMAModel",
|
33 |
+
"LLaMAPreTrainedModel",
|
34 |
+
]
|
35 |
+
|
36 |
+
|
37 |
+
if TYPE_CHECKING:
|
38 |
+
from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LLaMAConfig
|
39 |
+
from .tokenization_llama import LLaMATokenizer
|
40 |
+
|
41 |
+
try:
|
42 |
+
if not is_torch_available():
|
43 |
+
raise OptionalDependencyNotAvailable()
|
44 |
+
except OptionalDependencyNotAvailable:
|
45 |
+
pass
|
46 |
+
else:
|
47 |
+
from .modeling_llama import (
|
48 |
+
LLaMAForCausalLM,
|
49 |
+
LLaMAModel,
|
50 |
+
LLaMAPreTrainedModel,
|
51 |
+
)
|
52 |
+
|
53 |
+
|
54 |
+
else:
|
55 |
+
import sys
|
56 |
+
|
57 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
llama/configuration_llama.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The FAIR team of Meta AI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" LLaMA model configuration"""
|
16 |
+
|
17 |
+
from transformers.configuration_utils import PretrainedConfig
|
18 |
+
from transformers.utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
24 |
+
|
25 |
+
|
26 |
+
class LLaMAConfig(PretrainedConfig):
|
27 |
+
r"""
|
28 |
+
This is the configuration class to store the configuration of a [`~LLaMAModel`]. It is used to instantiate an LLaMA
|
29 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
30 |
+
defaults will yield a similar configuration to that of the LLaMA-7B.
|
31 |
+
|
32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
33 |
+
documentation from [`PretrainedConfig`] for more information.
|
34 |
+
|
35 |
+
|
36 |
+
Args:
|
37 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
38 |
+
Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
|
39 |
+
`inputs_ids` passed when calling [`~LLaMAModel`] or [`~TFLLaMAModel`].
|
40 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
41 |
+
Dimension of the hidden representations.
|
42 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
43 |
+
Dimension of the MLP representations.
|
44 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
45 |
+
Number of hidden layers in the Transformer encoder.
|
46 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
47 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
48 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
49 |
+
The non-linear activation function (function or string) in the decoder.
|
50 |
+
max_sequence_length (`int`, *optional*, defaults to 2048):
|
51 |
+
Max sequence length for model (for RoPE computation)
|
52 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
53 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
54 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
55 |
+
The epsilon used by the rms normalization layers.
|
56 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
57 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
58 |
+
relevant if `config.is_decoder=True`.
|
59 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
60 |
+
Whether to tie weight embeddings
|
61 |
+
Example:
|
62 |
+
|
63 |
+
```python
|
64 |
+
>>> from llama import LLaMAModel, LLaMAConfig
|
65 |
+
|
66 |
+
>>> # Initializing a LLaMA llama-7b style configuration
|
67 |
+
>>> configuration = LLaMAConfig()
|
68 |
+
|
69 |
+
>>> # Initializing a model from the llama-7b style configuration
|
70 |
+
>>> model = LLaMAModel(configuration)
|
71 |
+
|
72 |
+
>>> # Accessing the model configuration
|
73 |
+
>>> configuration = model.config
|
74 |
+
```"""
|
75 |
+
model_type = "llama"
|
76 |
+
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
vocab_size=32000,
|
80 |
+
hidden_size=4096,
|
81 |
+
intermediate_size=11008,
|
82 |
+
num_hidden_layers=32,
|
83 |
+
num_attention_heads=32,
|
84 |
+
hidden_act="silu",
|
85 |
+
max_sequence_length=2048,
|
86 |
+
initializer_range=0.02,
|
87 |
+
rms_norm_eps=1e-6,
|
88 |
+
use_cache=True,
|
89 |
+
pad_token_id=-1,
|
90 |
+
bos_token_id=0,
|
91 |
+
eos_token_id=1,
|
92 |
+
tie_word_embeddings=False,
|
93 |
+
**kwargs,
|
94 |
+
):
|
95 |
+
self.vocab_size = vocab_size
|
96 |
+
self.hidden_size = hidden_size
|
97 |
+
self.intermediate_size = intermediate_size
|
98 |
+
self.num_hidden_layers = num_hidden_layers
|
99 |
+
self.num_attention_heads = num_attention_heads
|
100 |
+
self.hidden_act = hidden_act
|
101 |
+
self.max_sequence_length = max_sequence_length
|
102 |
+
self.initializer_range = initializer_range
|
103 |
+
self.rms_norm_eps = rms_norm_eps
|
104 |
+
self.use_cache = use_cache
|
105 |
+
super().__init__(
|
106 |
+
pad_token_id=pad_token_id,
|
107 |
+
bos_token_id=bos_token_id,
|
108 |
+
eos_token_id=eos_token_id,
|
109 |
+
tie_word_embeddings=tie_word_embeddings,
|
110 |
+
**kwargs,
|
111 |
+
)
|
llama/convert_llama_weights_to_hf.py
ADDED
@@ -0,0 +1,264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
|
9 |
+
"""
|
10 |
+
Sample usage:
|
11 |
+
|
12 |
+
```
|
13 |
+
python src/transformers/models/llama/convert_llama_weights_to_hf.py \
|
14 |
+
--input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path
|
15 |
+
```
|
16 |
+
|
17 |
+
Thereafter, models can be loaded via:
|
18 |
+
|
19 |
+
```
|
20 |
+
tokenizer = transformers.LLaMATokenizer.from_pretrained("/output/path/tokenizer/")
|
21 |
+
|
22 |
+
model = transformers.LLaMAForCausalLM.from_pretrained("/output/path/llama-7b/")
|
23 |
+
```
|
24 |
+
"""
|
25 |
+
|
26 |
+
INTERMEDIATE_SIZE_MAP = {
|
27 |
+
"7B": 11008,
|
28 |
+
"13B": 13824,
|
29 |
+
"30B": 17920,
|
30 |
+
"65B": 22016,
|
31 |
+
}
|
32 |
+
NUM_SHARDS = {
|
33 |
+
"7B": 1,
|
34 |
+
"13B": 2,
|
35 |
+
"30B": 4,
|
36 |
+
"65B": 8,
|
37 |
+
}
|
38 |
+
|
39 |
+
|
40 |
+
def read_json(path):
|
41 |
+
with open(path, "r") as f:
|
42 |
+
return json.loads(f.read())
|
43 |
+
|
44 |
+
|
45 |
+
def write_json(text, path):
|
46 |
+
with open(path, "w") as f:
|
47 |
+
f.write(json.dumps(text))
|
48 |
+
|
49 |
+
|
50 |
+
def write_model(model_path, input_base_path, model_size):
|
51 |
+
assert model_size in INTERMEDIATE_SIZE_MAP
|
52 |
+
os.makedirs(model_path, exist_ok=True)
|
53 |
+
|
54 |
+
params = read_json(os.path.join(input_base_path, "params.json"))
|
55 |
+
num_shards = NUM_SHARDS[model_size]
|
56 |
+
n_layers = params["n_layers"]
|
57 |
+
n_heads = params["n_heads"]
|
58 |
+
n_heads_per_shard = n_heads // num_shards
|
59 |
+
dim = params["dim"]
|
60 |
+
dims_per_head = dim // n_heads
|
61 |
+
|
62 |
+
# Load weights
|
63 |
+
if model_size == "7B":
|
64 |
+
# Not shared
|
65 |
+
# (The sharded implementation would also work, but this is simpler.)
|
66 |
+
loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
|
67 |
+
else:
|
68 |
+
# Sharded
|
69 |
+
loaded = [
|
70 |
+
torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu")
|
71 |
+
for i in range(num_shards)
|
72 |
+
]
|
73 |
+
param_count = 0
|
74 |
+
index_dict = {"weight_map": {}}
|
75 |
+
for layer_i in range(n_layers):
|
76 |
+
filename = "pytorch_model-{:05d}-of-{:05d}.bin".format(
|
77 |
+
layer_i,
|
78 |
+
n_layers + 1,
|
79 |
+
)
|
80 |
+
if model_size == "7B":
|
81 |
+
# Unsharded
|
82 |
+
state_dict = {
|
83 |
+
f"model.decoder.layers.{layer_i}.self_attn.q_proj.weight": loaded[
|
84 |
+
f"layers.{layer_i}.attention.wq.weight"
|
85 |
+
],
|
86 |
+
f"model.decoder.layers.{layer_i}.self_attn.k_proj.weight": loaded[
|
87 |
+
f"layers.{layer_i}.attention.wk.weight"
|
88 |
+
],
|
89 |
+
f"model.decoder.layers.{layer_i}.self_attn.v_proj.weight": loaded[
|
90 |
+
f"layers.{layer_i}.attention.wv.weight"
|
91 |
+
],
|
92 |
+
f"model.decoder.layers.{layer_i}.self_attn.o_proj.weight": loaded[
|
93 |
+
f"layers.{layer_i}.attention.wo.weight"
|
94 |
+
],
|
95 |
+
f"model.decoder.layers.{layer_i}.feed_forward.w1.weight": loaded[
|
96 |
+
f"layers.{layer_i}.feed_forward.w1.weight"
|
97 |
+
],
|
98 |
+
f"model.decoder.layers.{layer_i}.feed_forward.w2.weight": loaded[
|
99 |
+
f"layers.{layer_i}.feed_forward.w2.weight"
|
100 |
+
],
|
101 |
+
f"model.decoder.layers.{layer_i}.feed_forward.w3.weight": loaded[
|
102 |
+
f"layers.{layer_i}.feed_forward.w3.weight"
|
103 |
+
],
|
104 |
+
f"model.decoder.layers.{layer_i}.attention_norm.weight": loaded[
|
105 |
+
f"layers.{layer_i}.attention_norm.weight"
|
106 |
+
],
|
107 |
+
f"model.decoder.layers.{layer_i}.ffn_norm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"],
|
108 |
+
}
|
109 |
+
else:
|
110 |
+
# Sharded
|
111 |
+
state_dict = {
|
112 |
+
f"model.decoder.layers.{layer_i}.attention_norm.weight": loaded[0][
|
113 |
+
f"layers.{layer_i}.attention_norm.weight"
|
114 |
+
],
|
115 |
+
f"model.decoder.layers.{layer_i}.ffn_norm.weight": loaded[0][f"layers.{layer_i}.ffn_norm.weight"],
|
116 |
+
}
|
117 |
+
state_dict[f"model.decoder.layers.{layer_i}.self_attn.q_proj.weight"] = torch.cat(
|
118 |
+
[
|
119 |
+
loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)
|
120 |
+
for i in range(num_shards)
|
121 |
+
],
|
122 |
+
dim=0,
|
123 |
+
).reshape(dim, dim)
|
124 |
+
state_dict[f"model.decoder.layers.{layer_i}.self_attn.k_proj.weight"] = torch.cat(
|
125 |
+
[
|
126 |
+
loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim)
|
127 |
+
for i in range(num_shards)
|
128 |
+
],
|
129 |
+
dim=0,
|
130 |
+
).reshape(dim, dim)
|
131 |
+
state_dict[f"model.decoder.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(
|
132 |
+
[
|
133 |
+
loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim)
|
134 |
+
for i in range(num_shards)
|
135 |
+
],
|
136 |
+
dim=0,
|
137 |
+
).reshape(dim, dim)
|
138 |
+
|
139 |
+
state_dict[f"model.decoder.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(
|
140 |
+
[loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1
|
141 |
+
)
|
142 |
+
state_dict[f"model.decoder.layers.{layer_i}.feed_forward.w1.weight"] = torch.cat(
|
143 |
+
[loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0
|
144 |
+
)
|
145 |
+
state_dict[f"model.decoder.layers.{layer_i}.feed_forward.w2.weight"] = torch.cat(
|
146 |
+
[loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1
|
147 |
+
)
|
148 |
+
state_dict[f"model.decoder.layers.{layer_i}.feed_forward.w3.weight"] = torch.cat(
|
149 |
+
[loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0
|
150 |
+
)
|
151 |
+
|
152 |
+
for k, v in state_dict.items():
|
153 |
+
index_dict["weight_map"][k] = filename
|
154 |
+
param_count += v.numel()
|
155 |
+
torch.save(state_dict, os.path.join(model_path, filename))
|
156 |
+
|
157 |
+
filename = "pytorch_model-{:05d}-of-{:05d}.bin".format(
|
158 |
+
n_layers,
|
159 |
+
n_layers + 1,
|
160 |
+
)
|
161 |
+
if model_size == "7B":
|
162 |
+
# Unsharded
|
163 |
+
state_dict = {
|
164 |
+
"model.decoder.embed_tokens.weight": loaded["tok_embeddings.weight"],
|
165 |
+
"model.decoder.norm.weight": loaded["norm.weight"],
|
166 |
+
"lm_head.weight": loaded["output.weight"],
|
167 |
+
}
|
168 |
+
else:
|
169 |
+
state_dict = {
|
170 |
+
"model.decoder.norm.weight": loaded[0]["norm.weight"],
|
171 |
+
"model.decoder.embed_tokens.weight": torch.cat(
|
172 |
+
[loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1
|
173 |
+
),
|
174 |
+
"lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0),
|
175 |
+
}
|
176 |
+
|
177 |
+
for k, v in state_dict.items():
|
178 |
+
index_dict["weight_map"][k] = filename
|
179 |
+
param_count += v.numel()
|
180 |
+
torch.save(state_dict, os.path.join(model_path, filename))
|
181 |
+
|
182 |
+
# Write configs
|
183 |
+
index_dict["metadata"] = {"total_size": param_count * 2}
|
184 |
+
write_json(index_dict, os.path.join(model_path, "pytorch_model.bin.index.json"))
|
185 |
+
config_out = {
|
186 |
+
"architectures": ["LLaMAForCausalLM"],
|
187 |
+
"bos_token_id": 0,
|
188 |
+
"eos_token_id": 1,
|
189 |
+
"hidden_act": "silu",
|
190 |
+
"hidden_size": params["dim"],
|
191 |
+
"intermediate_size": INTERMEDIATE_SIZE_MAP[model_size],
|
192 |
+
"initializer_range": 0.02,
|
193 |
+
"max_sequence_length": 2048,
|
194 |
+
"model_type": "llama",
|
195 |
+
"num_attention_heads": params["n_heads"],
|
196 |
+
"num_hidden_layers": params["n_layers"],
|
197 |
+
"pad_token_id": -1,
|
198 |
+
"rms_norm_eps": params["norm_eps"],
|
199 |
+
"torch_dtype": "float16",
|
200 |
+
"transformers_version": "4.27.0.dev0",
|
201 |
+
"use_cache": True,
|
202 |
+
"vocab_size": 32000,
|
203 |
+
}
|
204 |
+
write_json(
|
205 |
+
config_out,
|
206 |
+
os.path.join(model_path, "config.json"),
|
207 |
+
)
|
208 |
+
generation_config = {
|
209 |
+
"_from_model_config": True,
|
210 |
+
"bos_token_id": 0,
|
211 |
+
"eos_token_id": 1,
|
212 |
+
"pad_token_id": -1,
|
213 |
+
"transformers_version": "4.27.0.dev0",
|
214 |
+
}
|
215 |
+
write_json(
|
216 |
+
generation_config,
|
217 |
+
os.path.join(model_path, "generation_config.json"),
|
218 |
+
)
|
219 |
+
|
220 |
+
|
221 |
+
def write_tokenizer(tokenizer_path, input_tokenizer_path):
|
222 |
+
os.makedirs(tokenizer_path, exist_ok=True)
|
223 |
+
write_json({}, os.path.join(tokenizer_path, "special_tokens_map.json"))
|
224 |
+
write_json(
|
225 |
+
{
|
226 |
+
"bos_token": "",
|
227 |
+
"eos_token": "",
|
228 |
+
"model_max_length": int(1e30),
|
229 |
+
"tokenizer_class": "LLaMATokenizer",
|
230 |
+
"unk_token": "",
|
231 |
+
},
|
232 |
+
os.path.join(tokenizer_path, "tokenizer_config.json"),
|
233 |
+
)
|
234 |
+
shutil.copyfile(input_tokenizer_path, os.path.join(tokenizer_path, "tokenizer.model"))
|
235 |
+
|
236 |
+
|
237 |
+
def main():
|
238 |
+
parser = argparse.ArgumentParser()
|
239 |
+
parser.add_argument(
|
240 |
+
"--input_dir",
|
241 |
+
help="Location of LLaMA weights, which contains tokenizer.model and model folders",
|
242 |
+
)
|
243 |
+
parser.add_argument(
|
244 |
+
"--model_size",
|
245 |
+
choices=["7B", "13B", "30B", "65B"],
|
246 |
+
)
|
247 |
+
parser.add_argument(
|
248 |
+
"--output_dir",
|
249 |
+
help="Location to write HF model and tokenizer",
|
250 |
+
)
|
251 |
+
args = parser.parse_args()
|
252 |
+
write_model(
|
253 |
+
model_path=os.path.join(args.output_dir, "llama-{}".format(args.model_size).lower()),
|
254 |
+
input_base_path=os.path.join(args.input_dir, args.model_size),
|
255 |
+
model_size=args.model_size,
|
256 |
+
)
|
257 |
+
write_tokenizer(
|
258 |
+
tokenizer_path=os.path.join(args.output_dir, "tokenizer"),
|
259 |
+
input_tokenizer_path=os.path.join(args.input_dir, "tokenizer.model"),
|
260 |
+
)
|
261 |
+
|
262 |
+
|
263 |
+
if __name__ == "__main__":
|
264 |
+
main()
|
llama/modeling_llama.py
ADDED
@@ -0,0 +1,941 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch LLaMA model."""
|
16 |
+
import math
|
17 |
+
from typing import List, Optional, Tuple, Union
|
18 |
+
|
19 |
+
import torch
|
20 |
+
import torch.utils.checkpoint
|
21 |
+
from torch import nn
|
22 |
+
from torch.nn import CrossEntropyLoss
|
23 |
+
|
24 |
+
from transformers.activations import ACT2FN
|
25 |
+
from transformers.modeling_outputs import (
|
26 |
+
BaseModelOutputWithPast,
|
27 |
+
CausalLMOutputWithPast,
|
28 |
+
)
|
29 |
+
from transformers.modeling_utils import PreTrainedModel
|
30 |
+
from transformers.utils import (
|
31 |
+
add_code_sample_docstrings,
|
32 |
+
add_start_docstrings,
|
33 |
+
add_start_docstrings_to_model_forward,
|
34 |
+
logging,
|
35 |
+
replace_return_docstrings,
|
36 |
+
)
|
37 |
+
from .configuration_llama import LLaMAConfig
|
38 |
+
|
39 |
+
|
40 |
+
logger = logging.get_logger(__name__)
|
41 |
+
|
42 |
+
_CHECKPOINT_FOR_DOC = "llama-7b"
|
43 |
+
_CONFIG_FOR_DOC = "LLaMAConfig"
|
44 |
+
|
45 |
+
|
46 |
+
def _make_causal_mask(input_ids_shape: torch.Size, dtype: torch.dtype, past_key_values_length: int = 0):
|
47 |
+
"""
|
48 |
+
Make causal mask used for bi-directional self-attention.
|
49 |
+
"""
|
50 |
+
bsz, tgt_len = input_ids_shape
|
51 |
+
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min))
|
52 |
+
mask_cond = torch.arange(mask.size(-1))
|
53 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
54 |
+
mask = mask.to(dtype)
|
55 |
+
|
56 |
+
if past_key_values_length > 0:
|
57 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1)
|
58 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
59 |
+
|
60 |
+
|
61 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
62 |
+
"""
|
63 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
64 |
+
"""
|
65 |
+
bsz, src_len = mask.size()
|
66 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
67 |
+
|
68 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
69 |
+
|
70 |
+
inverted_mask = 1.0 - expanded_mask
|
71 |
+
|
72 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
73 |
+
|
74 |
+
|
75 |
+
class RMSNorm(torch.nn.Module):
|
76 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
77 |
+
super().__init__()
|
78 |
+
self.eps = eps
|
79 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
80 |
+
|
81 |
+
def _norm(self, x):
|
82 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
83 |
+
|
84 |
+
def forward(self, x):
|
85 |
+
output = self._norm(x.float()).type_as(x)
|
86 |
+
return output * self.weight
|
87 |
+
|
88 |
+
|
89 |
+
class LLaMAFeedForward(nn.Module):
|
90 |
+
def __init__(
|
91 |
+
self,
|
92 |
+
hidden_size: int,
|
93 |
+
intermediate_size: int,
|
94 |
+
hidden_act: str,
|
95 |
+
):
|
96 |
+
super().__init__()
|
97 |
+
self.w1 = nn.Linear(hidden_size, intermediate_size, bias=False)
|
98 |
+
self.w2 = nn.Linear(intermediate_size, hidden_size, bias=False)
|
99 |
+
self.w3 = nn.Linear(hidden_size, intermediate_size, bias=False)
|
100 |
+
self.act_fn = ACT2FN[hidden_act]
|
101 |
+
|
102 |
+
def forward(self, x):
|
103 |
+
return self.w2(self.act_fn(self.w1(x)) * self.w3(x))
|
104 |
+
|
105 |
+
|
106 |
+
class LLaMAAttention(nn.Module):
|
107 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
108 |
+
|
109 |
+
def __init__(
|
110 |
+
self,
|
111 |
+
hidden_size: int,
|
112 |
+
num_heads: int,
|
113 |
+
complex_frequencies: torch.Tensor,
|
114 |
+
):
|
115 |
+
super().__init__()
|
116 |
+
self.hidden_size = hidden_size
|
117 |
+
self.num_heads = num_heads
|
118 |
+
self.head_dim = hidden_size // num_heads
|
119 |
+
|
120 |
+
if (self.head_dim * num_heads) != self.hidden_size:
|
121 |
+
raise ValueError(
|
122 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
123 |
+
f" and `num_heads`: {num_heads})."
|
124 |
+
)
|
125 |
+
self.q_proj = nn.Linear(
|
126 |
+
hidden_size,
|
127 |
+
num_heads * self.head_dim,
|
128 |
+
bias=False,
|
129 |
+
)
|
130 |
+
self.k_proj = nn.Linear(
|
131 |
+
hidden_size,
|
132 |
+
num_heads * self.head_dim,
|
133 |
+
bias=False,
|
134 |
+
)
|
135 |
+
self.v_proj = nn.Linear(
|
136 |
+
hidden_size,
|
137 |
+
num_heads * self.head_dim,
|
138 |
+
bias=False,
|
139 |
+
)
|
140 |
+
self.o_proj = nn.Linear(
|
141 |
+
num_heads * self.head_dim,
|
142 |
+
hidden_size,
|
143 |
+
bias=False,
|
144 |
+
)
|
145 |
+
self.complex_frequencies = complex_frequencies
|
146 |
+
|
147 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
148 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
149 |
+
|
150 |
+
def forward(
|
151 |
+
self,
|
152 |
+
hidden_states: torch.Tensor,
|
153 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
154 |
+
attention_mask: Optional[torch.Tensor] = None,
|
155 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
156 |
+
output_attentions: bool = False,
|
157 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
158 |
+
"""Input shape: Batch x Time x Channel"""
|
159 |
+
|
160 |
+
self.complex_frequencies = self.complex_frequencies.to(hidden_states.device)
|
161 |
+
|
162 |
+
bsz, tgt_len, _ = hidden_states.size()
|
163 |
+
|
164 |
+
# get query proj
|
165 |
+
query_states = self.q_proj(hidden_states).view(bsz, tgt_len, self.num_heads, self.head_dim)
|
166 |
+
key_states = self.k_proj(hidden_states).view(bsz, tgt_len, self.num_heads, self.head_dim)
|
167 |
+
value_states = self.v_proj(hidden_states).view(bsz, tgt_len, self.num_heads, self.head_dim)
|
168 |
+
|
169 |
+
if past_key_value is not None:
|
170 |
+
start = past_key_value[0].shape[2]
|
171 |
+
else:
|
172 |
+
start = 0
|
173 |
+
|
174 |
+
sliced_complex_frequencies = self.complex_frequencies[start : start + tgt_len]
|
175 |
+
query_states, key_states = apply_rotary_emb(
|
176 |
+
query_states=query_states, key_states=key_states, complex_frequencies=sliced_complex_frequencies
|
177 |
+
)
|
178 |
+
|
179 |
+
# get key, value proj
|
180 |
+
key_states = self._shape(key_states, -1, bsz)
|
181 |
+
value_states = self._shape(value_states, -1, bsz)
|
182 |
+
if past_key_value is not None:
|
183 |
+
# reuse k, v, self_attention
|
184 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
185 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
186 |
+
|
187 |
+
past_key_value = (key_states, value_states)
|
188 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
189 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
190 |
+
key_states = key_states.view(*proj_shape)
|
191 |
+
value_states = value_states.view(*proj_shape)
|
192 |
+
|
193 |
+
src_len = key_states.size(1)
|
194 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) / math.sqrt(self.head_dim)
|
195 |
+
|
196 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
197 |
+
raise ValueError(
|
198 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
199 |
+
f" {attn_weights.size()}"
|
200 |
+
)
|
201 |
+
|
202 |
+
if attention_mask is not None:
|
203 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
204 |
+
raise ValueError(
|
205 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
206 |
+
)
|
207 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
208 |
+
attn_weights = torch.max(attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min))
|
209 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
210 |
+
|
211 |
+
# upcast to fp32 if the weights are in fp16. Please see https://github.com/huggingface/transformers/pull/17437
|
212 |
+
if attn_weights.dtype == torch.float16:
|
213 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(torch.float16)
|
214 |
+
else:
|
215 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
216 |
+
|
217 |
+
if layer_head_mask is not None:
|
218 |
+
if layer_head_mask.size() != (self.num_heads,):
|
219 |
+
raise ValueError(
|
220 |
+
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
221 |
+
f" {layer_head_mask.size()}"
|
222 |
+
)
|
223 |
+
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
224 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
225 |
+
|
226 |
+
if output_attentions:
|
227 |
+
# this operation is a bit awkward, but it's required to
|
228 |
+
# make sure that attn_weights keeps its gradient.
|
229 |
+
# In order to do so, attn_weights have to be reshaped
|
230 |
+
# twice and have to be reused in the following
|
231 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
232 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
233 |
+
else:
|
234 |
+
attn_weights_reshaped = None
|
235 |
+
|
236 |
+
attn_output = torch.bmm(attn_weights, value_states)
|
237 |
+
|
238 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
239 |
+
raise ValueError(
|
240 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
241 |
+
f" {attn_output.size()}"
|
242 |
+
)
|
243 |
+
|
244 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
245 |
+
attn_output = attn_output.transpose(1, 2)
|
246 |
+
|
247 |
+
attn_output = attn_output.reshape(bsz, tgt_len, self.hidden_size)
|
248 |
+
|
249 |
+
attn_output = self.o_proj(attn_output)
|
250 |
+
|
251 |
+
return attn_output, attn_weights_reshaped, past_key_value
|
252 |
+
|
253 |
+
|
254 |
+
class LLaMADecoderLayer(nn.Module):
|
255 |
+
def __init__(self, config: LLaMAConfig):
|
256 |
+
super().__init__()
|
257 |
+
self.hidden_size = config.hidden_size
|
258 |
+
complex_frequencies = precompute_complex_frequencies(
|
259 |
+
head_dim=self.hidden_size // config.num_attention_heads,
|
260 |
+
length=config.max_sequence_length * 2,
|
261 |
+
)
|
262 |
+
self.self_attn = LLaMAAttention(
|
263 |
+
hidden_size=self.hidden_size,
|
264 |
+
num_heads=config.num_attention_heads,
|
265 |
+
complex_frequencies=complex_frequencies,
|
266 |
+
)
|
267 |
+
self.feed_forward = LLaMAFeedForward(
|
268 |
+
hidden_size=self.hidden_size,
|
269 |
+
intermediate_size=config.intermediate_size,
|
270 |
+
hidden_act=config.hidden_act,
|
271 |
+
)
|
272 |
+
self.attention_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
273 |
+
self.ffn_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
274 |
+
|
275 |
+
def forward(
|
276 |
+
self,
|
277 |
+
hidden_states: torch.Tensor,
|
278 |
+
attention_mask: Optional[torch.Tensor] = None,
|
279 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
280 |
+
output_attentions: Optional[bool] = False,
|
281 |
+
use_cache: Optional[bool] = False,
|
282 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
283 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
284 |
+
"""
|
285 |
+
Args:
|
286 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
287 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
288 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
289 |
+
layer_head_mask (`torch.FloatTensor`, *optional*): mask for attention heads in a given layer of size
|
290 |
+
`(encoder_attention_heads,)`.
|
291 |
+
output_attentions (`bool`, *optional*):
|
292 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
293 |
+
returned tensors for more detail.
|
294 |
+
use_cache (`bool`, *optional*):
|
295 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
296 |
+
(see `past_key_values`).
|
297 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
298 |
+
"""
|
299 |
+
|
300 |
+
residual = hidden_states
|
301 |
+
|
302 |
+
hidden_states = self.attention_norm(hidden_states)
|
303 |
+
|
304 |
+
# Self Attention
|
305 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
306 |
+
hidden_states=hidden_states,
|
307 |
+
past_key_value=past_key_value,
|
308 |
+
attention_mask=attention_mask,
|
309 |
+
layer_head_mask=layer_head_mask,
|
310 |
+
output_attentions=output_attentions,
|
311 |
+
)
|
312 |
+
hidden_states = residual + hidden_states
|
313 |
+
|
314 |
+
# Fully Connected
|
315 |
+
residual = hidden_states
|
316 |
+
hidden_states = self.ffn_norm(hidden_states)
|
317 |
+
hidden_states = self.feed_forward(hidden_states)
|
318 |
+
hidden_states = residual + hidden_states
|
319 |
+
|
320 |
+
outputs = (hidden_states,)
|
321 |
+
|
322 |
+
if output_attentions:
|
323 |
+
outputs += (self_attn_weights,)
|
324 |
+
|
325 |
+
if use_cache:
|
326 |
+
outputs += (present_key_value,)
|
327 |
+
|
328 |
+
return outputs
|
329 |
+
|
330 |
+
|
331 |
+
LLAMA_START_DOCSTRING = r"""
|
332 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
333 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
334 |
+
etc.)
|
335 |
+
|
336 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
337 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
338 |
+
and behavior.
|
339 |
+
|
340 |
+
Parameters:
|
341 |
+
config ([`LLaMAConfig`]):
|
342 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
343 |
+
load the weights associated with the model, only the configuration. Check out the
|
344 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
345 |
+
"""
|
346 |
+
|
347 |
+
|
348 |
+
@add_start_docstrings(
|
349 |
+
"The bare OPT Model outputting raw hidden-states without any specific head on top.",
|
350 |
+
LLAMA_START_DOCSTRING,
|
351 |
+
)
|
352 |
+
class LLaMAPreTrainedModel(PreTrainedModel):
|
353 |
+
config_class = LLaMAConfig
|
354 |
+
base_model_prefix = "model"
|
355 |
+
supports_gradient_checkpointing = True
|
356 |
+
_no_split_modules = ["LLaMADecoderLayer"]
|
357 |
+
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
|
358 |
+
|
359 |
+
def _init_weights(self, module):
|
360 |
+
std = self.config.initializer_range
|
361 |
+
if isinstance(module, nn.Linear):
|
362 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
363 |
+
if module.bias is not None:
|
364 |
+
module.bias.data.zero_()
|
365 |
+
elif isinstance(module, nn.Embedding):
|
366 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
367 |
+
if module.padding_idx is not None:
|
368 |
+
module.weight.data[module.padding_idx].zero_()
|
369 |
+
|
370 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
371 |
+
if isinstance(module, (LLaMADecoder)):
|
372 |
+
module.gradient_checkpointing = value
|
373 |
+
|
374 |
+
|
375 |
+
LLAMA_INPUTS_DOCSTRING = r"""
|
376 |
+
Args:
|
377 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
378 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
379 |
+
it.
|
380 |
+
|
381 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
382 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
383 |
+
|
384 |
+
[What are input IDs?](../glossary#input-ids)
|
385 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
386 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
387 |
+
|
388 |
+
- 1 for tokens that are **not masked**,
|
389 |
+
- 0 for tokens that are **masked**.
|
390 |
+
|
391 |
+
[What are attention masks?](../glossary#attention-mask)
|
392 |
+
|
393 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
394 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
395 |
+
|
396 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
397 |
+
`past_key_values`).
|
398 |
+
|
399 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
400 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
401 |
+
information on the default strategy.
|
402 |
+
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
403 |
+
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
|
404 |
+
|
405 |
+
- 1 indicates the head is **not masked**,
|
406 |
+
- 0 indicates the head is **masked**.
|
407 |
+
|
408 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
409 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
410 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
411 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
412 |
+
|
413 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
414 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
415 |
+
|
416 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
417 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
418 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
419 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
420 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
421 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
422 |
+
model's internal embedding lookup matrix.
|
423 |
+
use_cache (`bool`, *optional*):
|
424 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
425 |
+
`past_key_values`).
|
426 |
+
output_attentions (`bool`, *optional*):
|
427 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
428 |
+
tensors for more detail.
|
429 |
+
output_hidden_states (`bool`, *optional*):
|
430 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
431 |
+
more detail.
|
432 |
+
return_dict (`bool`, *optional*):
|
433 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
434 |
+
"""
|
435 |
+
|
436 |
+
|
437 |
+
class LLaMADecoder(LLaMAPreTrainedModel):
|
438 |
+
"""
|
439 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`LLaMADecoderLayer`]
|
440 |
+
|
441 |
+
Args:
|
442 |
+
config: LLaMAConfig
|
443 |
+
"""
|
444 |
+
|
445 |
+
def __init__(self, config: LLaMAConfig):
|
446 |
+
super().__init__(config)
|
447 |
+
self.padding_idx = config.pad_token_id
|
448 |
+
|
449 |
+
self.vocab_size = config.vocab_size
|
450 |
+
|
451 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
452 |
+
|
453 |
+
self.layers = nn.ModuleList([LLaMADecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
454 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
455 |
+
|
456 |
+
self.gradient_checkpointing = False
|
457 |
+
# Initialize weights and apply final processing
|
458 |
+
self.post_init()
|
459 |
+
|
460 |
+
def get_input_embeddings(self):
|
461 |
+
return self.embed_tokens
|
462 |
+
|
463 |
+
def set_input_embeddings(self, value):
|
464 |
+
self.embed_tokens = value
|
465 |
+
|
466 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
467 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
468 |
+
# create causal mask
|
469 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
470 |
+
combined_attention_mask = None
|
471 |
+
if input_shape[-1] > 1:
|
472 |
+
combined_attention_mask = _make_causal_mask(
|
473 |
+
input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length
|
474 |
+
).to(inputs_embeds.device)
|
475 |
+
|
476 |
+
if attention_mask is not None:
|
477 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
478 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
479 |
+
inputs_embeds.device
|
480 |
+
)
|
481 |
+
combined_attention_mask = (
|
482 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
483 |
+
)
|
484 |
+
|
485 |
+
return combined_attention_mask
|
486 |
+
|
487 |
+
def forward(
|
488 |
+
self,
|
489 |
+
input_ids: torch.LongTensor = None,
|
490 |
+
attention_mask: Optional[torch.Tensor] = None,
|
491 |
+
head_mask: Optional[torch.Tensor] = None,
|
492 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
493 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
494 |
+
use_cache: Optional[bool] = None,
|
495 |
+
output_attentions: Optional[bool] = None,
|
496 |
+
output_hidden_states: Optional[bool] = None,
|
497 |
+
return_dict: Optional[bool] = None,
|
498 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
499 |
+
r"""
|
500 |
+
Args:
|
501 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
502 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
503 |
+
provide it.
|
504 |
+
|
505 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
506 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
507 |
+
|
508 |
+
[What are input IDs?](../glossary#input-ids)
|
509 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
510 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
511 |
+
|
512 |
+
- 1 for tokens that are **not masked**,
|
513 |
+
- 0 for tokens that are **masked**.
|
514 |
+
|
515 |
+
[What are attention masks?](../glossary#attention-mask)
|
516 |
+
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
|
517 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
518 |
+
|
519 |
+
- 1 indicates the head is **not masked**,
|
520 |
+
- 0 indicates the head is **masked**.
|
521 |
+
|
522 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
523 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
524 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
525 |
+
|
526 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
527 |
+
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
528 |
+
|
529 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
530 |
+
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
531 |
+
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
532 |
+
|
533 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
534 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
535 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
536 |
+
than the model's internal embedding lookup matrix.
|
537 |
+
output_attentions (`bool`, *optional*):
|
538 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
539 |
+
returned tensors for more detail.
|
540 |
+
output_hidden_states (`bool`, *optional*):
|
541 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
542 |
+
for more detail.
|
543 |
+
return_dict (`bool`, *optional*):
|
544 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
545 |
+
"""
|
546 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
547 |
+
output_hidden_states = (
|
548 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
549 |
+
)
|
550 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
551 |
+
|
552 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
553 |
+
|
554 |
+
# retrieve input_ids and inputs_embeds
|
555 |
+
if input_ids is not None and inputs_embeds is not None:
|
556 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
557 |
+
elif input_ids is not None:
|
558 |
+
input_shape = input_ids.size()
|
559 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
560 |
+
elif inputs_embeds is not None:
|
561 |
+
input_shape = inputs_embeds.size()[:-1]
|
562 |
+
else:
|
563 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
564 |
+
|
565 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
566 |
+
|
567 |
+
if inputs_embeds is None:
|
568 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
569 |
+
|
570 |
+
# embed positions
|
571 |
+
if attention_mask is None:
|
572 |
+
attention_mask = torch.ones(inputs_embeds.shape[:2], dtype=torch.bool, device=inputs_embeds.device)
|
573 |
+
|
574 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
575 |
+
attention_mask, input_shape, inputs_embeds, past_key_values_length
|
576 |
+
)
|
577 |
+
|
578 |
+
hidden_states = inputs_embeds
|
579 |
+
|
580 |
+
if self.gradient_checkpointing and self.training:
|
581 |
+
if use_cache:
|
582 |
+
logger.warning_once(
|
583 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
584 |
+
)
|
585 |
+
use_cache = False
|
586 |
+
|
587 |
+
# decoder layers
|
588 |
+
all_hidden_states = () if output_hidden_states else None
|
589 |
+
all_self_attns = () if output_attentions else None
|
590 |
+
next_decoder_cache = () if use_cache else None
|
591 |
+
|
592 |
+
# check if head_mask has a correct number of layers specified if desired
|
593 |
+
for attn_mask, mask_name in zip([head_mask], ["head_mask"]):
|
594 |
+
if attn_mask is not None:
|
595 |
+
if attn_mask.size()[0] != (len(self.layers)):
|
596 |
+
raise ValueError(
|
597 |
+
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
|
598 |
+
f" {head_mask.size()[0]}."
|
599 |
+
)
|
600 |
+
|
601 |
+
for idx, decoder_layer in enumerate(self.layers):
|
602 |
+
if output_hidden_states:
|
603 |
+
all_hidden_states += (hidden_states,)
|
604 |
+
|
605 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
606 |
+
|
607 |
+
if self.gradient_checkpointing and self.training:
|
608 |
+
|
609 |
+
def create_custom_forward(module):
|
610 |
+
def custom_forward(*inputs):
|
611 |
+
# None for past_key_value
|
612 |
+
return module(*inputs, output_attentions, None)
|
613 |
+
|
614 |
+
return custom_forward
|
615 |
+
|
616 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
617 |
+
create_custom_forward(decoder_layer),
|
618 |
+
hidden_states,
|
619 |
+
attention_mask,
|
620 |
+
head_mask[idx] if head_mask is not None else None,
|
621 |
+
None,
|
622 |
+
)
|
623 |
+
else:
|
624 |
+
layer_outputs = decoder_layer(
|
625 |
+
hidden_states,
|
626 |
+
attention_mask=attention_mask,
|
627 |
+
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
628 |
+
past_key_value=past_key_value,
|
629 |
+
output_attentions=output_attentions,
|
630 |
+
use_cache=use_cache,
|
631 |
+
)
|
632 |
+
|
633 |
+
hidden_states = layer_outputs[0]
|
634 |
+
|
635 |
+
if use_cache:
|
636 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
637 |
+
|
638 |
+
if output_attentions:
|
639 |
+
all_self_attns += (layer_outputs[1],)
|
640 |
+
|
641 |
+
hidden_states = self.norm(hidden_states)
|
642 |
+
|
643 |
+
# add hidden states from the last decoder layer
|
644 |
+
if output_hidden_states:
|
645 |
+
all_hidden_states += (hidden_states,)
|
646 |
+
|
647 |
+
next_cache = next_decoder_cache if use_cache else None
|
648 |
+
if not return_dict:
|
649 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
650 |
+
return BaseModelOutputWithPast(
|
651 |
+
last_hidden_state=hidden_states,
|
652 |
+
past_key_values=next_cache,
|
653 |
+
hidden_states=all_hidden_states,
|
654 |
+
attentions=all_self_attns,
|
655 |
+
)
|
656 |
+
|
657 |
+
|
658 |
+
@add_start_docstrings(
|
659 |
+
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
|
660 |
+
LLAMA_START_DOCSTRING,
|
661 |
+
)
|
662 |
+
class LLaMAModel(LLaMAPreTrainedModel):
|
663 |
+
def __init__(self, config: LLaMAConfig):
|
664 |
+
super().__init__(config)
|
665 |
+
self.decoder = LLaMADecoder(config)
|
666 |
+
# Initialize weights and apply final processing
|
667 |
+
self.post_init()
|
668 |
+
|
669 |
+
def get_input_embeddings(self):
|
670 |
+
return self.decoder.embed_tokens
|
671 |
+
|
672 |
+
def set_input_embeddings(self, value):
|
673 |
+
self.decoder.embed_tokens = value
|
674 |
+
|
675 |
+
def get_decoder(self):
|
676 |
+
return self.decoder
|
677 |
+
|
678 |
+
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
|
679 |
+
@add_code_sample_docstrings(
|
680 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
681 |
+
output_type=BaseModelOutputWithPast,
|
682 |
+
config_class=_CONFIG_FOR_DOC,
|
683 |
+
)
|
684 |
+
def forward(
|
685 |
+
self,
|
686 |
+
input_ids: torch.LongTensor = None,
|
687 |
+
attention_mask: Optional[torch.Tensor] = None,
|
688 |
+
head_mask: Optional[torch.Tensor] = None,
|
689 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
690 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
691 |
+
use_cache: Optional[bool] = None,
|
692 |
+
output_attentions: Optional[bool] = None,
|
693 |
+
output_hidden_states: Optional[bool] = None,
|
694 |
+
return_dict: Optional[bool] = None,
|
695 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
696 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
697 |
+
output_hidden_states = (
|
698 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
699 |
+
)
|
700 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
701 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
702 |
+
|
703 |
+
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
|
704 |
+
decoder_outputs = self.decoder(
|
705 |
+
input_ids=input_ids,
|
706 |
+
attention_mask=attention_mask,
|
707 |
+
head_mask=head_mask,
|
708 |
+
past_key_values=past_key_values,
|
709 |
+
inputs_embeds=inputs_embeds,
|
710 |
+
use_cache=use_cache,
|
711 |
+
output_attentions=output_attentions,
|
712 |
+
output_hidden_states=output_hidden_states,
|
713 |
+
return_dict=return_dict,
|
714 |
+
)
|
715 |
+
|
716 |
+
if not return_dict:
|
717 |
+
return decoder_outputs
|
718 |
+
|
719 |
+
return BaseModelOutputWithPast(
|
720 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
721 |
+
past_key_values=decoder_outputs.past_key_values,
|
722 |
+
hidden_states=decoder_outputs.hidden_states,
|
723 |
+
attentions=decoder_outputs.attentions,
|
724 |
+
)
|
725 |
+
|
726 |
+
|
727 |
+
class LLaMAForCausalLM(LLaMAPreTrainedModel):
|
728 |
+
_keys_to_ignore_on_load_missing = [r"lm_head.weight"]
|
729 |
+
|
730 |
+
def __init__(self, config):
|
731 |
+
super().__init__(config)
|
732 |
+
self.model = LLaMAModel(config)
|
733 |
+
|
734 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
735 |
+
|
736 |
+
# Initialize weights and apply final processing
|
737 |
+
self.post_init()
|
738 |
+
|
739 |
+
def get_input_embeddings(self):
|
740 |
+
return self.model.decoder.embed_tokens
|
741 |
+
|
742 |
+
def set_input_embeddings(self, value):
|
743 |
+
self.model.decoder.embed_tokens = value
|
744 |
+
|
745 |
+
def get_output_embeddings(self):
|
746 |
+
return self.lm_head
|
747 |
+
|
748 |
+
def set_output_embeddings(self, new_embeddings):
|
749 |
+
self.lm_head = new_embeddings
|
750 |
+
|
751 |
+
def set_decoder(self, decoder):
|
752 |
+
self.model.decoder = decoder
|
753 |
+
|
754 |
+
def get_decoder(self):
|
755 |
+
return self.model.decoder
|
756 |
+
|
757 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
758 |
+
def forward(
|
759 |
+
self,
|
760 |
+
input_ids: torch.LongTensor = None,
|
761 |
+
attention_mask: Optional[torch.Tensor] = None,
|
762 |
+
head_mask: Optional[torch.Tensor] = None,
|
763 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
764 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
765 |
+
labels: Optional[torch.LongTensor] = None,
|
766 |
+
use_cache: Optional[bool] = None,
|
767 |
+
output_attentions: Optional[bool] = None,
|
768 |
+
output_hidden_states: Optional[bool] = None,
|
769 |
+
return_dict: Optional[bool] = None,
|
770 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
771 |
+
r"""
|
772 |
+
Args:
|
773 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
774 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
775 |
+
provide it.
|
776 |
+
|
777 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
778 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
779 |
+
|
780 |
+
[What are input IDs?](../glossary#input-ids)
|
781 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
782 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
783 |
+
|
784 |
+
- 1 for tokens that are **not masked**,
|
785 |
+
- 0 for tokens that are **masked**.
|
786 |
+
|
787 |
+
[What are attention masks?](../glossary#attention-mask)
|
788 |
+
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
|
789 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
790 |
+
|
791 |
+
- 1 indicates the head is **not masked**,
|
792 |
+
- 0 indicates the head is **masked**.
|
793 |
+
|
794 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
795 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
796 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
797 |
+
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
|
798 |
+
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
|
799 |
+
|
800 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
801 |
+
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
802 |
+
|
803 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
804 |
+
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
805 |
+
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
806 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
807 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
808 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
809 |
+
than the model's internal embedding lookup matrix.
|
810 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
811 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
812 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
813 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
814 |
+
use_cache (`bool`, *optional*):
|
815 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
816 |
+
(see `past_key_values`).
|
817 |
+
output_attentions (`bool`, *optional*):
|
818 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
819 |
+
returned tensors for more detail.
|
820 |
+
output_hidden_states (`bool`, *optional*):
|
821 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
822 |
+
for more detail.
|
823 |
+
return_dict (`bool`, *optional*):
|
824 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
825 |
+
|
826 |
+
Returns:
|
827 |
+
|
828 |
+
Example:
|
829 |
+
|
830 |
+
```python
|
831 |
+
>>> from transformers import AutoTokenizer, LLaMAForCausalLM
|
832 |
+
|
833 |
+
>>> model = LLaMAForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
834 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
835 |
+
|
836 |
+
>>> prompt = "Hey, are you consciours? Can you talk to me?"
|
837 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
838 |
+
|
839 |
+
>>> # Generate
|
840 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
841 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
842 |
+
"Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
|
843 |
+
```"""
|
844 |
+
|
845 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
846 |
+
output_hidden_states = (
|
847 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
848 |
+
)
|
849 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
850 |
+
|
851 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
852 |
+
outputs = self.model.decoder(
|
853 |
+
input_ids=input_ids,
|
854 |
+
attention_mask=attention_mask,
|
855 |
+
head_mask=head_mask,
|
856 |
+
past_key_values=past_key_values,
|
857 |
+
inputs_embeds=inputs_embeds,
|
858 |
+
use_cache=use_cache,
|
859 |
+
output_attentions=output_attentions,
|
860 |
+
output_hidden_states=output_hidden_states,
|
861 |
+
return_dict=return_dict,
|
862 |
+
)
|
863 |
+
|
864 |
+
logits = self.lm_head(outputs[0]).contiguous()
|
865 |
+
|
866 |
+
loss = None
|
867 |
+
if labels is not None:
|
868 |
+
# Shift so that tokens < n predict n
|
869 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
870 |
+
shift_labels = labels[..., 1:].contiguous()
|
871 |
+
# Flatten the tokens
|
872 |
+
loss_fct = CrossEntropyLoss()
|
873 |
+
loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))
|
874 |
+
|
875 |
+
if not return_dict:
|
876 |
+
output = (logits,) + outputs[1:]
|
877 |
+
return (loss,) + output if loss is not None else output
|
878 |
+
|
879 |
+
return CausalLMOutputWithPast(
|
880 |
+
loss=loss,
|
881 |
+
logits=logits,
|
882 |
+
past_key_values=outputs.past_key_values,
|
883 |
+
hidden_states=outputs.hidden_states,
|
884 |
+
attentions=outputs.attentions,
|
885 |
+
)
|
886 |
+
|
887 |
+
def prepare_inputs_for_generation(
|
888 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
889 |
+
):
|
890 |
+
if past_key_values:
|
891 |
+
input_ids = input_ids[:, -1:]
|
892 |
+
|
893 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
894 |
+
if inputs_embeds is not None and past_key_values is None:
|
895 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
896 |
+
else:
|
897 |
+
model_inputs = {"input_ids": input_ids}
|
898 |
+
|
899 |
+
model_inputs.update(
|
900 |
+
{
|
901 |
+
"past_key_values": past_key_values,
|
902 |
+
"use_cache": kwargs.get("use_cache"),
|
903 |
+
"attention_mask": attention_mask,
|
904 |
+
}
|
905 |
+
)
|
906 |
+
return model_inputs
|
907 |
+
|
908 |
+
@staticmethod
|
909 |
+
def _reorder_cache(past_key_values, beam_idx):
|
910 |
+
reordered_past = ()
|
911 |
+
for layer_past in past_key_values:
|
912 |
+
reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
|
913 |
+
return reordered_past
|
914 |
+
|
915 |
+
|
916 |
+
def precompute_complex_frequencies(head_dim: int, length: int, theta: float = 10000.0):
|
917 |
+
frequencies = 1.0 / (theta ** (torch.arange(0, head_dim, 2)[: (head_dim // 2)].float() / head_dim))
|
918 |
+
t = torch.arange(length, device=frequencies.device)
|
919 |
+
frequencies = torch.outer(t, frequencies).float()
|
920 |
+
return torch.polar(torch.ones_like(frequencies), frequencies) # complex64
|
921 |
+
|
922 |
+
|
923 |
+
def apply_rotary_emb(
|
924 |
+
query_states: torch.Tensor,
|
925 |
+
key_states: torch.Tensor,
|
926 |
+
complex_frequencies: torch.Tensor,
|
927 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
928 |
+
query_states_complex = torch.view_as_complex(query_states.float().reshape(*key_states.shape[:-1], -1, 2))
|
929 |
+
key_states_complex = torch.view_as_complex(key_states.float().reshape(*key_states.shape[:-1], -1, 2))
|
930 |
+
complex_frequencies = reshape_for_broadcast(complex_frequencies, query_states_complex)
|
931 |
+
output_query_states = torch.view_as_real(query_states_complex * complex_frequencies).flatten(3)
|
932 |
+
output_key_states = torch.view_as_real(key_states_complex * complex_frequencies).flatten(3)
|
933 |
+
return output_query_states.type_as(query_states), output_key_states.type_as(key_states)
|
934 |
+
|
935 |
+
|
936 |
+
def reshape_for_broadcast(complex_frequencies: torch.Tensor, x: torch.Tensor):
|
937 |
+
ndim = x.ndim
|
938 |
+
assert 0 <= 1 < ndim
|
939 |
+
assert complex_frequencies.shape == (x.shape[1], x.shape[-1])
|
940 |
+
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
941 |
+
return complex_frequencies.view(*shape)
|
llama/tokenization_llama.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The FAIR team of Meta AI and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for LLaMA."""
|
16 |
+
import os
|
17 |
+
import re
|
18 |
+
from shutil import copyfile
|
19 |
+
from typing import Any, Dict, List, Optional, Tuple
|
20 |
+
|
21 |
+
import sentencepiece as spm
|
22 |
+
|
23 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
24 |
+
from transformers.utils import logging
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
30 |
+
|
31 |
+
PRETRAINED_VOCAB_FILES_MAP = {}
|
32 |
+
|
33 |
+
|
34 |
+
class LLaMATokenizer(PreTrainedTokenizer):
|
35 |
+
"""
|
36 |
+
Construct a LLaMA tokenizer. Based on byte-level Byte-Pair-Encoding.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
vocab_file (`str`):
|
40 |
+
Path to the vocabulary file.
|
41 |
+
"""
|
42 |
+
|
43 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
44 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
45 |
+
model_input_names = ["input_ids", "attention_mask"]
|
46 |
+
|
47 |
+
def __init__(
|
48 |
+
self,
|
49 |
+
vocab_file,
|
50 |
+
unk_token="",
|
51 |
+
bos_token="",
|
52 |
+
eos_token="",
|
53 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
54 |
+
add_bos_token=False,
|
55 |
+
add_eos_token=False,
|
56 |
+
**kwargs,
|
57 |
+
):
|
58 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
59 |
+
super().__init__(bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs)
|
60 |
+
self.vocab_file = vocab_file
|
61 |
+
self.add_bos_token = add_bos_token
|
62 |
+
self.add_eos_token = add_eos_token
|
63 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
64 |
+
self.sp_model.Load(vocab_file)
|
65 |
+
|
66 |
+
""" Initialisation"""
|
67 |
+
|
68 |
+
@property
|
69 |
+
def vocab_size(self):
|
70 |
+
"""Returns vocab size"""
|
71 |
+
return self.sp_model.get_piece_size()
|
72 |
+
|
73 |
+
@property
|
74 |
+
def bos_token_id(self) -> Optional[int]:
|
75 |
+
return self.sp_model.bos_id()
|
76 |
+
|
77 |
+
@property
|
78 |
+
def eos_token_id(self) -> Optional[int]:
|
79 |
+
return self.sp_model.eos_id()
|
80 |
+
|
81 |
+
def get_vocab(self):
|
82 |
+
"""Returns vocab as a dict"""
|
83 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
84 |
+
vocab.update(self.added_tokens_encoder)
|
85 |
+
return vocab
|
86 |
+
|
87 |
+
def _tokenize(self, text):
|
88 |
+
"""Returns a tokenized string."""
|
89 |
+
return self.sp_model.encode(text, out_type=str)
|
90 |
+
|
91 |
+
def _convert_token_to_id(self, token):
|
92 |
+
"""Converts a token (str) in an id using the vocab."""
|
93 |
+
return self.sp_model.piece_to_id(token)
|
94 |
+
|
95 |
+
def _convert_id_to_token(self, index):
|
96 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
97 |
+
token = self.sp_model.IdToPiece(index)
|
98 |
+
return token
|
99 |
+
|
100 |
+
def convert_tokens_to_string(self, tokens):
|
101 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
102 |
+
current_sub_tokens = []
|
103 |
+
out_string = ""
|
104 |
+
prev_is_special = False
|
105 |
+
for token in tokens:
|
106 |
+
# make sure that special tokens are not decoded using sentencepiece model
|
107 |
+
if token in self.all_special_tokens:
|
108 |
+
if not prev_is_special:
|
109 |
+
out_string += " "
|
110 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
111 |
+
prev_is_special = True
|
112 |
+
current_sub_tokens = []
|
113 |
+
else:
|
114 |
+
current_sub_tokens.append(token)
|
115 |
+
prev_is_special = False
|
116 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
117 |
+
return out_string.strip()
|
118 |
+
|
119 |
+
def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
120 |
+
"""
|
121 |
+
Save the vocabulary and special tokens file to a directory.
|
122 |
+
|
123 |
+
Args:
|
124 |
+
save_directory (`str`):
|
125 |
+
The directory in which to save the vocabulary.
|
126 |
+
|
127 |
+
Returns:
|
128 |
+
`Tuple(str)`: Paths to the files saved.
|
129 |
+
"""
|
130 |
+
if not os.path.isdir(save_directory):
|
131 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
132 |
+
return
|
133 |
+
out_vocab_file = os.path.join(
|
134 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
135 |
+
)
|
136 |
+
|
137 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
138 |
+
copyfile(self.vocab_file, out_vocab_file)
|
139 |
+
elif not os.path.isfile(self.vocab_file):
|
140 |
+
with open(out_vocab_file, "wb") as fi:
|
141 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
142 |
+
fi.write(content_spiece_model)
|
143 |
+
|
144 |
+
return (out_vocab_file,)
|
145 |
+
|
146 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
147 |
+
if self.add_bos_token:
|
148 |
+
bos_token_ids = [self.bos_token_id]
|
149 |
+
else:
|
150 |
+
bos_token_ids = []
|
151 |
+
|
152 |
+
output = bos_token_ids + token_ids_0
|
153 |
+
|
154 |
+
if token_ids_1 is not None:
|
155 |
+
output = output + token_ids_1
|
156 |
+
|
157 |
+
if self.add_eos_token:
|
158 |
+
output = output + [self.eos_token_id]
|
159 |
+
|
160 |
+
return output
|
161 |
+
|
162 |
+
def get_special_tokens_mask(
|
163 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
164 |
+
) -> List[int]:
|
165 |
+
"""
|
166 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
167 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
168 |
+
|
169 |
+
Args:
|
170 |
+
token_ids_0 (`List[int]`):
|
171 |
+
List of IDs.
|
172 |
+
token_ids_1 (`List[int]`, *optional*):
|
173 |
+
Optional second list of IDs for sequence pairs.
|
174 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
175 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
176 |
+
|
177 |
+
Returns:
|
178 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
179 |
+
"""
|
180 |
+
if already_has_special_tokens:
|
181 |
+
return super().get_special_tokens_mask(
|
182 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
183 |
+
)
|
184 |
+
|
185 |
+
if token_ids_1 is None:
|
186 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
187 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
188 |
+
|
189 |
+
def create_token_type_ids_from_sequences(
|
190 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
191 |
+
) -> List[int]:
|
192 |
+
"""
|
193 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
|
194 |
+
use of token type ids, therefore a list of zeros is returned.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
token_ids_0 (`List[int]`):
|
198 |
+
List of IDs.
|
199 |
+
token_ids_1 (`List[int]`, *optional*):
|
200 |
+
Optional second list of IDs for sequence pairs.
|
201 |
+
|
202 |
+
Returns:
|
203 |
+
`List[int]`: List of zeros.
|
204 |
+
"""
|
205 |
+
eos = [self.eos_token_id]
|
206 |
+
|
207 |
+
if token_ids_1 is None:
|
208 |
+
return len(token_ids_0 + eos) * [0]
|
209 |
+
return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
|