{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ea465778f40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1736456342154220239, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABo0b71ca1u6sT4StuuHDLFT0DC6qVg3NQAAgD8AAIA/TdrlPQx1nT9jLrA+W/fevroeET6mccI9AAAAAAAAAADQE5Y+sQGIP90c4z3i/7u+pM5pPvDBq70AAAAAAAAAAGZ5br3sebW5KsTeOpOotbXEzcm69W+3tAAAgD8AAIA/oMpfPqZneD9U3cg9XFndvg7IJD7bkt29AAAAAAAAAABNZy89XAcIuqrCdTpE08UzBNduu535jbkAAIA/AACAP3POi70U1Iq6LmOiO23cgjb6s8K5ur68ugAAgD8AAIA/DXCqvcMherq/LZo6qfGfNWS/rjnJPbK5AACAPwAAgD+aOSS94ai0uqdXn7urtzG1j62utgLntToAAIA/AACAP5oGrL3smde5uu2/ObwaAjP7gle7it/juAAAgD8AAIA/szzFvVynYbog61W737ZOsmcVfjumz1+zAACAPwAAAADmEjk9rjmDujdxjjoGJH816G6AurIcprkAAIA/AACAPwDoujuDIy68ii0PvhTnl71fSkY97F43PgAAgD8AAIA/ZipovB8Fy7lGIuG6z7HutQfgdztHIQY6AACAPwAAgD9aXcG91ocQPWZPkz3Ssim9OqyKvPNWsDwAAAAAAAAAAIA8ND0pWEm6yGLkutVeu7VzHv25muUtNQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQF53CPZIxxmMAWyUTegDjAF0lEdAmrDtE1EVnHV9lChoBkdAZePbpNbkfmgHTegDaAhHQJq3bZ8KG+N1fZQoaAZHQF2eU34sVcloB03oA2gIR0CavwYFqzqsdX2UKGgGR0BjZMyxiXpoaAdN6ANoCEdAmsGvluFYdXV9lChoBkdAY2yBjFyaNWgHTegDaAhHQJrENZzPrv91fZQoaAZHQGObSKFZgXxoB03oA2gIR0Cax5EKmbb2dX2UKGgGR0BdvVGkN4JNaAdN6ANoCEdAmsyePzWf9XV9lChoBkdAY+xT4tYjjmgHTegDaAhHQJrRMYYR/Vl1fZQoaAZHQGW+oOx0MgFoB03oA2gIR0Ca0u9Nvfj0dX2UKGgGR0BgItByCFsYaAdN6ANoCEdAmte5dOZb6nV9lChoBkdAXjKsr/bTMWgHTegDaAhHQJre/rv9cbB1fZQoaAZHQGVwdycTakBoB03oA2gIR0Ca4QTyauwHdX2UKGgGR0Bk/FsUIsy0aAdN6ANoCEdAmuTz+NtIkXV9lChoBkdAYc1CUornT2gHTegDaAhHQJrn+fZmI0t1fZQoaAZHQGXrHVXmvGJoB03oA2gIR0Ca6DtVJcxCdX2UKGgGR0BfUiNS619faAdN6ANoCEdAmuj99Ujs2XV9lChoBkdAXkGEQGwA2mgHTegDaAhHQJsEqTRplBh1fZQoaAZHQGJHPjOs1bdoB03oA2gIR0CbC5zhgmZ3dX2UKGgGR0BjEMxubZvlaAdN6ANoCEdAmxVE5Qxes3V9lChoBkdAZba5UcXFcmgHTegDaAhHQJsYp6Vt4zJ1fZQoaAZHQGSu2uPmxMZoB03oA2gIR0CbGuYqG1x9dX2UKGgGR0BhDyX6ZYxMaAdN6ANoCEdAmx2YE0SAY3V9lChoBkdAZhyg/1QIlmgHTegDaAhHQJshvjABT4t1fZQoaAZHQGaRdtuUD+1oB03oA2gIR0CbJWE7nxJ/dX2UKGgGR0BgtizgMtsfaAdN6ANoCEdAmybA0GeMAHV9lChoBkdAZBWij+Jgs2gHTegDaAhHQJsqjyup0fZ1fZQoaAZHQGNxavicXnBoB03oA2gIR0CbLz4lhPTHdX2UKGgGR0BkisqBmPHUaAdN6ANoCEdAmzCJuVHFxXV9lChoBkdAYCGB/ZuhsmgHTegDaAhHQJszOLuQZGd1fZQoaAZHQGXDVQIldC5oB03oA2gIR0CbNRrBj4HpdX2UKGgGR0BntXbTMJQdaAdN6ANoCEdAmzVY+OfdynV9lChoBkdAZGuU9IPK+2gHTegDaAhHQJs2GyNXHR11fZQoaAZHQGRh2/zreIloB03oA2gIR0CbUzCpFTegdX2UKGgGR0BhM78HfMwDaAdN6ANoCEdAm1oBQWN3n3V9lChoBkdAYO9S7Xg9/2gHTegDaAhHQJthj/6wdKd1fZQoaAZHQGRKjG96C19oB03oA2gIR0CbZBzOoo/idX2UKGgGR0BjCifvnbItaAdN6ANoCEdAm2Zy1NQCS3V9lChoBkdARGdsDW9UTGgHS/9oCEdAm2k2CyyD7XV9lChoBkdAYLuzSkTHsGgHTegDaAhHQJtpap5u63B1fZQoaAZHQF0+gcLjPv9oB03oA2gIR0CbbZl1r6+GdX2UKGgGR0Bg2LZ39rGjaAdN6ANoCEdAm3EXjU/fO3V9lChoBkdAY9Ysr/bTMWgHTegDaAhHQJtyWfFrEcd1fZQoaAZHQGb362F36hxoB03oA2gIR0Cbdo8qFyq/dX2UKGgGR0BjErwQUYbbaAdN6ANoCEdAm3zBAnlXBHV9lChoBkdAZHUvfTCtR2gHTegDaAhHQJt+g33pOet1fZQoaAZHQGNw14gRsdloB03oA2gIR0Cbggv38GcGdX2UKGgGR0BkhILeANG3aAdN6ANoCEdAm4PvJaJQ+HV9lChoBkdAZKzcynDR+mgHTegDaAhHQJuELe40/GF1fZQoaAZHQGeM5bILgGdoB03oA2gIR0CbhOKISDh+dX2UKGgGR0Bo4f114gRsaAdN6ANoCEdAm40imALApXV9lChoBkdAYZyuQIUrTmgHTegDaAhHQJuwRaTwDvF1fZQoaAZHQGXcY4Qz1sdoB03oA2gIR0Cbtl4+8oQWdX2UKGgGR0BhlBfKISDiaAdN6ANoCEdAm7mjy8SPEXV9lChoBkdAYRwANG3F1mgHTegDaAhHQJu9pyBClad1fZQoaAZHQGZUzaCcwxpoB03oA2gIR0CbveW4mTkidX2UKGgGR0BfPt25hBqsaAdN6ANoCEdAm8OL3j+72HV9lChoBkdAY8eJF9a2W2gHTegDaAhHQJvHvwtrbg11fZQoaAZHQGTYs8xKxs5oB03oA2gIR0CbyUy9mHxjdX2UKGgGR0BlmLTz/ZM+aAdN6ANoCEdAm82tm6GxlnV9lChoBkdAYzxblijL0WgHTegDaAhHQJvTeSr5qM51fZQoaAZHQFQa+CbtqpNoB03oA2gIR0Cb1OBEroW6dX2UKGgGR0Biz7XxvvSdaAdN6ANoCEdAm9emxQizLXV9lChoBkdAYZNl1bJOnGgHTegDaAhHQJvZj6Eal1t1fZQoaAZHQGIKqIacZtNoB03oA2gIR0Cb2c51eSjhdX2UKGgGR0BmETN8ma6SaAdN6ANoCEdAm9qNO/L1VnV9lChoBkdAZUkECeVcEGgHTegDaAhHQJvlhAgPmPp1fZQoaAZHQGA3VjRUm2NoB03oA2gIR0CcCReHzpX7dX2UKGgGR0BmTLs6aLGaaAdN6ANoCEdAnAvFDfFaS3V9lChoBkdAYefF3pwCKmgHTegDaAhHQJwOr5IpYtB1fZQoaAZHQGRyvppvgm9oB03oA2gIR0CcEcX3QD3edX2UKGgGR0BnW06DGtITaAdN6ANoCEdAnBIW16Vt43V9lChoBkdAZEzcFhXr+2gHTegDaAhHQJwX59a2Wpt1fZQoaAZHQGaNUCJXQt1oB03oA2gIR0CcHNLvTgEVdX2UKGgGR0BfizD0lJHzaAdN6ANoCEdAnB4tVea8YnV9lChoBkdAZZDChvitJWgHTegDaAhHQJwiN57gKnh1fZQoaAZHQGVc9vCMxXZoB03oA2gIR0CcJxNWEK3NdX2UKGgGR0BmwLUI9kjHaAdN6ANoCEdAnChl3ljmS3V9lChoBkdAXdKmzjWCmWgHTegDaAhHQJwrGQ+2Vml1fZQoaAZHQGMRGTTvy9VoB03oA2gIR0CcLPkSmIj4dX2UKGgGR0Bk4yLjxTbWaAdN6ANoCEdAnC02eDnNgXV9lChoBkdAXdXQUpNKy2gHTegDaAhHQJwt6ieumrN1fZQoaAZHQGIa+q7yxzJoB03oA2gIR0CcNn9nscABdX2UKGgGR0BuCuUfPompaAdN2gFoCEdAnDaBFy7wrnV9lChoBkdAcB1dxhlUZWgHTXUCaAhHQJxVzfcer+51fZQoaAZHQGGXGD+R5kdoB03oA2gIR0CcWT6I3zczdX2UKGgGR0BiwlkauOjqaAdN6ANoCEdAnFv0zfrKNnV9lChoBkdAZr4aiKziTGgHTegDaAhHQJxeeH+Idlx1fZQoaAZHQGawYMnZ00ZoB03oA2gIR0CcYXbSZ0CBdX2UKGgGR0Bi3xCrtE5RaAdN6ANoCEdAnGGyKNyYHHV9lChoBkdAXv153Tuv2WgHTegDaAhHQJxmRYLb5/N1fZQoaAZHQGQhIvalDWtoB03oA2gIR0CccNnzQNTcdX2UKGgGR0Biuzor4FibaAdN6ANoCEdAnHZwhfShJ3V9lChoBkdAYTKOuJUHZGgHTegDaAhHQJx37tWuHN51fZQoaAZHQGC7rs8gZCRoB03oA2gIR0CcfAZ7ojfOdX2UKGgGR0BlUIRRMvh7aAdN6ANoCEdAnH7YZ62OQ3V9lChoBkdAYk4CmuTzNGgHTegDaAhHQJx/LtqpLmJ1fZQoaAZHQGeTcRDkU9JoB03oA2gIR0CcgGOJtSAIdX2UKGgGR0Blvq6lLvkSaAdN6ANoCEdAnIvyKBNEgHV9lChoBkdAZhZLX+VC5WgHTegDaAhHQJyL9DMNc4Z1fZQoaAZHQC+2XzDn/1hoB0vdaAhHQJyPEA5q/M51ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}