whisper-base-urdu / README.md
sharjeel103's picture
End of training
e61172a verified
metadata
language:
  - ur
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper base Urdu
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: ur
          split: None
          args: 'config: ur, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 15.479629171136969

Whisper base Urdu

This model is a fine-tuned version of openai/whisper-base on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1856
  • Wer: 15.4796

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 4500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0069 5.0847 1500 0.1959 17.1192
0.0003 10.1695 3000 0.1881 15.8235
0.0001 15.2542 4500 0.1856 15.4796

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1