File size: 1,986 Bytes
82a3763
11dd815
 
82a3763
 
 
 
 
 
 
 
 
 
 
 
 
11dd815
82a3763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: gpl-3.0
base_model: ckiplab/bert-base-chinese
tags:
- generated_from_trainer
model-index:
- name: clip-DIT-finetuned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/shark_meow_team/huggingface/runs/l1gxhklx)
# clip-DIT-finetuned

This model is a fine-tuned version of [ckiplab/bert-base-chinese](https://huggingface.co/ckiplab/bert-base-chinese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7439

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 100
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100.0

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.648         | 10.0  | 780  | 2.4340          |
| 0.797         | 20.0  | 1560 | 1.5686          |
| 0.3112        | 30.0  | 2340 | 1.2473          |
| 0.1758        | 40.0  | 3120 | 1.0606          |
| 0.1176        | 50.0  | 3900 | 0.9469          |
| 0.09          | 60.0  | 4680 | 0.8606          |
| 0.0733        | 70.0  | 5460 | 0.8265          |
| 0.0631        | 80.0  | 6240 | 0.7704          |
| 0.0576        | 90.0  | 7020 | 0.7507          |
| 0.0545        | 100.0 | 7800 | 0.7439          |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1