Readme.md file updated
Browse files
README.md
CHANGED
@@ -1,3 +1,390 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- darrow-ai/LegalLensNER
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
metrics:
|
8 |
+
- f1
|
9 |
+
pipeline_tag: token-classification
|
10 |
+
library_name: sklearn
|
11 |
+
tags:
|
12 |
+
- ner
|
13 |
+
- legal
|
14 |
+
- crf
|
15 |
+
---
|
16 |
+
# Model Card for Model ID
|
17 |
+
|
18 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
19 |
+
Conditional Random Field model for performing named entity recognition with hand crafted features. Named entities recognied - Violation-on, Violation-by, and Law.
|
20 |
+
The dataset is of the BIO format. The model achieves an F1-score of 0.32.
|
21 |
+
|
22 |
+
## Model Details
|
23 |
+
|
24 |
+
### Model Description
|
25 |
+
|
26 |
+
<!-- Provide a longer summary of what this model is. -->
|
27 |
+
The model was developed for LegalLens 2024 competition as part of Natural Legal Language Processing 2024. The model has handcrafted features for identifying named
|
28 |
+
entities in the BIO format.
|
29 |
+
|
30 |
+
|
31 |
+
- **Developed by:** Shashank M Chakravarthy
|
32 |
+
- **Funded by [optional]:** NA
|
33 |
+
- **Shared by [optional]:** NA
|
34 |
+
- **Model type:** Statistical Model
|
35 |
+
- **Language(s) (NLP):** English
|
36 |
+
- **License:** Apache 2.0 License
|
37 |
+
- **Finetuned from model [optional]:** NA
|
38 |
+
|
39 |
+
### Model Sources [optional]
|
40 |
+
|
41 |
+
<!-- Provide the basic links for the model. -->
|
42 |
+
|
43 |
+
- **Repository:** NA
|
44 |
+
- **Paper [optional]:** [https://aclanthology.org/2024.nllp-1.33.pdf]
|
45 |
+
- **Demo [optional]:** NA
|
46 |
+
|
47 |
+
## Uses
|
48 |
+
|
49 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
50 |
+
The model is used to detect named entities in unstructured text. The model can be extended to other entities with further modification to the handcrafted features.
|
51 |
+
|
52 |
+
### Direct Use
|
53 |
+
|
54 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
55 |
+
|
56 |
+
The model can be directly used on any unstructured text with a bit of preprocessing. The files contain the evaluation script.
|
57 |
+
|
58 |
+
### Downstream Use [optional]
|
59 |
+
|
60 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
61 |
+
|
62 |
+
|
63 |
+
### Out-of-Scope Use
|
64 |
+
|
65 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
66 |
+
This model is handcrafted for detecting violations and law in text. Can be used for other legal text which may contain similar entities.
|
67 |
+
|
68 |
+
## Bias, Risks, and Limitations
|
69 |
+
|
70 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
71 |
+
|
72 |
+
The limitation comes with the handcrafting the features.
|
73 |
+
|
74 |
+
### Recommendations
|
75 |
+
|
76 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
77 |
+
|
78 |
+
If the text used for prediction is improperly processed without POS tags, the model will not perform as its designed to.
|
79 |
+
|
80 |
+
## How to Get Started with the Model
|
81 |
+
|
82 |
+
Use the code below to get started with the model.
|
83 |
+
### Load libraries
|
84 |
+
```
|
85 |
+
import ast
|
86 |
+
import pandas as pd
|
87 |
+
import joblib
|
88 |
+
import nltk
|
89 |
+
from nltk import pos_tag
|
90 |
+
import string
|
91 |
+
from nltk.stem import WordNetLemmatizer
|
92 |
+
from nltk.stem import PorterStemmer
|
93 |
+
```
|
94 |
+
|
95 |
+
### Check if nltk modules are downloaded, if not download them
|
96 |
+
```
|
97 |
+
nltk.download('wordnet')
|
98 |
+
nltk.download('omw-1.4')
|
99 |
+
nltk.download("averaged_perceptron_tagger")
|
100 |
+
```
|
101 |
+
### Class for grouping tokens as sentences (redundant if text processed directly)
|
102 |
+
```
|
103 |
+
class getsentence(object):
|
104 |
+
'''
|
105 |
+
This class is used to get the sentences from the dataset.
|
106 |
+
Converts from BIO format to sentences using their sentence numbers
|
107 |
+
'''
|
108 |
+
def __init__(self, data):
|
109 |
+
self.n_sent = 1.0
|
110 |
+
self.data = data
|
111 |
+
self.empty = False
|
112 |
+
self.grouped = self.data.groupby("sentence_num").apply(self._agg_func)
|
113 |
+
self.sentences = [s for s in self.grouped]
|
114 |
+
|
115 |
+
def _agg_func(self, s):
|
116 |
+
return [(w, p) for w, p in zip(s["token"].values.tolist(),
|
117 |
+
s["pos_tag"].values.tolist())]
|
118 |
+
|
119 |
+
```
|
120 |
+
### Creates features for words in a sentence (code can be reduced using iteration)
|
121 |
+
```
|
122 |
+
def word2features(sent, i):
|
123 |
+
'''
|
124 |
+
This method is used to extract features from the words in the sentence.
|
125 |
+
The main features extracted are:
|
126 |
+
- word.lower(): The word in lowercase
|
127 |
+
- word.isdigit(): If the word is a digit
|
128 |
+
- word.punct(): If the word is a punctuation
|
129 |
+
- postag: The pos tag of the word
|
130 |
+
- word.lemma(): The lemma of the word
|
131 |
+
- word.stem(): The stem of the word
|
132 |
+
The features (not all) are also extracted for the 4 previous and 4 next words.
|
133 |
+
'''
|
134 |
+
global token_count
|
135 |
+
wordnet_lemmatizer = WordNetLemmatizer()
|
136 |
+
porter_stemmer = PorterStemmer()
|
137 |
+
word = sent[i][0]
|
138 |
+
postag = sent[i][1]
|
139 |
+
|
140 |
+
features = {
|
141 |
+
'bias': 1.0,
|
142 |
+
'word.lower()': word.lower(),
|
143 |
+
'word.isdigit()': word.isdigit(),
|
144 |
+
# Check if its punctuations
|
145 |
+
'word.punct()': word in string.punctuation,
|
146 |
+
'postag': postag,
|
147 |
+
# Lemma of the word
|
148 |
+
'word.lemma()': wordnet_lemmatizer.lemmatize(word),
|
149 |
+
# Stem of the word
|
150 |
+
'word.stem()': porter_stemmer.stem(word)
|
151 |
+
}
|
152 |
+
if i > 0:
|
153 |
+
word1 = sent[i-1][0]
|
154 |
+
postag1 = sent[i-1][1]
|
155 |
+
features.update({
|
156 |
+
'-1:word.lower()': word1.lower(),
|
157 |
+
'-1:word.isdigit()': word1.isdigit(),
|
158 |
+
'-1:word.punct()': word1 in string.punctuation,
|
159 |
+
'-1:postag': postag1
|
160 |
+
})
|
161 |
+
if i - 2 >= 0:
|
162 |
+
features.update({
|
163 |
+
'-2:word.lower()': sent[i-2][0].lower(),
|
164 |
+
'-2:word.isdigit()': sent[i-2][0].isdigit(),
|
165 |
+
'-2:word.punct()': sent[i-2][0] in string.punctuation,
|
166 |
+
'-2:postag': sent[i-2][1]
|
167 |
+
})
|
168 |
+
if i - 3 >= 0:
|
169 |
+
features.update({
|
170 |
+
'-3:word.lower()': sent[i-3][0].lower(),
|
171 |
+
'-3:word.isdigit()': sent[i-3][0].isdigit(),
|
172 |
+
'-3:word.punct()': sent[i-3][0] in string.punctuation,
|
173 |
+
'-3:postag': sent[i-3][1]
|
174 |
+
})
|
175 |
+
if i - 4 >= 0:
|
176 |
+
features.update({
|
177 |
+
'-4:word.lower()': sent[i-4][0].lower(),
|
178 |
+
'-4:word.isdigit()': sent[i-4][0].isdigit(),
|
179 |
+
'-4:word.punct()': sent[i-4][0] in string.punctuation,
|
180 |
+
'-4:postag': sent[i-4][1]
|
181 |
+
})
|
182 |
+
else:
|
183 |
+
features['BOS'] = True
|
184 |
+
|
185 |
+
if i < len(sent)-1:
|
186 |
+
word1 = sent[i+1][0]
|
187 |
+
postag1 = sent[i+1][1]
|
188 |
+
features.update({
|
189 |
+
'+1:word.lower()': word1.lower(),
|
190 |
+
'+1:word.isdigit()': word1.isdigit(),
|
191 |
+
'+1:word.punct()': word1 in string.punctuation,
|
192 |
+
'+1:postag': postag1
|
193 |
+
})
|
194 |
+
if i + 2 < len(sent):
|
195 |
+
features.update({
|
196 |
+
'+2:word.lower()': sent[i+2][0].lower(),
|
197 |
+
'+2:word.isdigit()': sent[i+2][0].isdigit(),
|
198 |
+
'+2:word.punct()': sent[i+2][0] in string.punctuation,
|
199 |
+
'+2:postag': sent[i+2][1]
|
200 |
+
})
|
201 |
+
if i + 3 < len(sent):
|
202 |
+
features.update({
|
203 |
+
'+3:word.lower()': sent[i+3][0].lower(),
|
204 |
+
'+3:word.isdigit()': sent[i+3][0].isdigit(),
|
205 |
+
'+3:word.punct()': sent[i+3][0] in string.punctuation,
|
206 |
+
'+3:postag': sent[i+3][1]
|
207 |
+
})
|
208 |
+
if i + 4 < len(sent):
|
209 |
+
features.update({
|
210 |
+
'+4:word.lower()': sent[i+4][0].lower(),
|
211 |
+
'+4:word.isdigit()': sent[i+4][0].isdigit(),
|
212 |
+
'+4:word.punct()': sent[i+4][0] in string.punctuation,
|
213 |
+
'+4:postag': sent[i+4][1]
|
214 |
+
})
|
215 |
+
else:
|
216 |
+
features['EOS'] = True
|
217 |
+
|
218 |
+
return features
|
219 |
+
```
|
220 |
+
### Obtain features for a given sentence
|
221 |
+
```
|
222 |
+
def sent2features(sent):
|
223 |
+
'''
|
224 |
+
This method is used to extract features from the sentence.
|
225 |
+
'''
|
226 |
+
return [word2features(sent, i) for i in range(len(sent))]
|
227 |
+
```
|
228 |
+
### Load file from your directory
|
229 |
+
```
|
230 |
+
df_eval = pd.read_excel("testset_NER_LegalLens.xlsx")
|
231 |
+
```
|
232 |
+
### Evaluate data type and create pos_tags for each token
|
233 |
+
```
|
234 |
+
df_eval["tokens"] = df_eval["tokens"].apply(ast.literal_eval)
|
235 |
+
df_eval['pos_tags'] = df_eval['tokens'].apply(lambda x: [tag[1]
|
236 |
+
for tag in pos_tag(x)])
|
237 |
+
```
|
238 |
+
### Aggregate tokens to sentences
|
239 |
+
```
|
240 |
+
data_eval = []
|
241 |
+
for i in range(len(df_eval)):
|
242 |
+
for j in range(len(df_eval["tokens"][i])):
|
243 |
+
data_eval.append(
|
244 |
+
{
|
245 |
+
"sentence_num": i+1,
|
246 |
+
"id": df_eval["id"][i],
|
247 |
+
"token": df_eval["tokens"][i][j],
|
248 |
+
"pos_tag": df_eval["pos_tags"][i][j],
|
249 |
+
}
|
250 |
+
)
|
251 |
+
data_eval = pd.DataFrame(data_eval)
|
252 |
+
getter = getsentence(data_eval)
|
253 |
+
sentences_eval = getter.sentences
|
254 |
+
X_eval = [sent2features(s) for s in sentences_eval]
|
255 |
+
```
|
256 |
+
### Load model from your directory
|
257 |
+
```
|
258 |
+
crf = joblib.load("../models/crf.pkl")
|
259 |
+
y_pred_eval = crf.predict(X_eval)
|
260 |
+
print("NER tags predicted.")
|
261 |
+
df_eval["ner_tags"] = y_pred_eval
|
262 |
+
df_eval.drop(columns=["pos_tags"], inplace=True)
|
263 |
+
print("Saving the predictions...")
|
264 |
+
df_eval.to_csv("predictions_NERLens.csv", index=False)
|
265 |
+
print("Predictions saved.")
|
266 |
+
```
|
267 |
+
|
268 |
+
## Training Details
|
269 |
+
|
270 |
+
### Training Data
|
271 |
+
|
272 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
273 |
+
|
274 |
+
[https://huggingface.co/datasets/darrow-ai/LegalLensNER]
|
275 |
+
|
276 |
+
### Training Procedure
|
277 |
+
|
278 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
279 |
+
The dataset was first evaluated for its datatype, POS_tags were created for each token in the text. With handcrafted features,
|
280 |
+
the model was trained on a CPU. Training time is around 20-30 minutes for this dataset.
|
281 |
+
#### Preprocessing [optional]
|
282 |
+
For every token, POS_tags were assigned using NLTK library.
|
283 |
+
|
284 |
+
|
285 |
+
#### Training Hyperparameters
|
286 |
+
|
287 |
+
- **Training regime:** NA <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
288 |
+
|
289 |
+
#### Speeds, Sizes, Times [optional]
|
290 |
+
|
291 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
292 |
+
NA
|
293 |
+
|
294 |
+
## Evaluation
|
295 |
+
|
296 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
297 |
+
The model was evaluated using macro-F1 score. A score of 0.32 was obtained on unseen test data.
|
298 |
+
|
299 |
+
### Testing Data, Factors & Metrics
|
300 |
+
|
301 |
+
#### Testing Data
|
302 |
+
|
303 |
+
<!-- This should link to a Dataset Card if possible. -->
|
304 |
+
|
305 |
+
[https://huggingface.co/datasets/darrow-ai/LegalLensNER]
|
306 |
+
|
307 |
+
#### Factors
|
308 |
+
|
309 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
310 |
+
|
311 |
+
[More Information Needed]
|
312 |
+
|
313 |
+
#### Metrics
|
314 |
+
|
315 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
316 |
+
|
317 |
+
Macro-F1 score as it evaluates the true performance of the model and mitigates the performance boost created by highly skewed entities in the dataset.
|
318 |
+
|
319 |
+
### Results
|
320 |
+
|
321 |
+
0.32 macro-F1 score on unseen data.
|
322 |
+
|
323 |
+
#### Summary
|
324 |
+
|
325 |
+
The model was designed and developed to tackle NER task in unstructured text.
|
326 |
+
|
327 |
+
## Model Examination [optional]
|
328 |
+
|
329 |
+
<!-- Relevant interpretability work for the model goes here -->
|
330 |
+
NA
|
331 |
+
|
332 |
+
## Environmental Impact
|
333 |
+
|
334 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
335 |
+
|
336 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
337 |
+
|
338 |
+
- **Hardware Type:** 13th Gen Intel(R) Core(TM) i7-1365U
|
339 |
+
- **Hours used:** 0.5 hours
|
340 |
+
- **Cloud Provider:** NA
|
341 |
+
- **Compute Region:** NA
|
342 |
+
- **Carbon Emitted:** Unknown
|
343 |
+
|
344 |
+
## Technical Specifications [optional]
|
345 |
+
|
346 |
+
### Model Architecture and Objective
|
347 |
+
|
348 |
+
[More Information Needed]
|
349 |
+
|
350 |
+
### Compute Infrastructure
|
351 |
+
|
352 |
+
[More Information Needed]
|
353 |
+
|
354 |
+
#### Hardware
|
355 |
+
|
356 |
+
[More Information Needed]
|
357 |
+
|
358 |
+
#### Software
|
359 |
+
|
360 |
+
[More Information Needed]
|
361 |
+
|
362 |
+
## Citation [optional]
|
363 |
+
|
364 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
365 |
+
|
366 |
+
**BibTeX:**
|
367 |
+
|
368 |
+
[More Information Needed]
|
369 |
+
|
370 |
+
**APA:**
|
371 |
+
|
372 |
+
[More Information Needed]
|
373 |
+
|
374 |
+
## Glossary [optional]
|
375 |
+
|
376 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
377 |
+
|
378 |
+
[More Information Needed]
|
379 |
+
|
380 |
+
## More Information [optional]
|
381 |
+
|
382 |
+
[More Information Needed]
|
383 |
+
|
384 |
+
## Model Card Authors [optional]
|
385 |
+
|
386 |
+
[More Information Needed]
|
387 |
+
|
388 |
+
## Model Card Contact
|
389 |
+
|
390 |
+
[More Information Needed]
|