shibing624
commited on
Commit
•
c61f3ec
1
Parent(s):
6899b00
Create README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,134 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- zh
|
4 |
+
tags:
|
5 |
+
- chatglm
|
6 |
+
- pytorch
|
7 |
+
- zh
|
8 |
+
- Text2Text-Generation
|
9 |
+
license: "apache-2.0"
|
10 |
+
widget:
|
11 |
+
- text: "对下面中文拼写纠错:\n少先队员因该为老人让坐。\n答:"
|
12 |
+
|
13 |
---
|
14 |
+
|
15 |
+
# Chinese Spelling Correction LoRA Model
|
16 |
+
ChatGLM3-6B中文纠错LoRA模型
|
17 |
+
|
18 |
+
`shibing624/chatglm3-6b-csc-chinese-lora` evaluate test data:
|
19 |
+
|
20 |
+
The overall performance of shibing624/chatglm3-6b-csc-chinese-lora on CSC **test**:
|
21 |
+
|
22 |
+
|prefix|input_text|target_text|pred|
|
23 |
+
|:-- |:--- |:--- |:-- |
|
24 |
+
|对下面文本纠错:|少先队员因该为老人让坐。|少先队员应该为老人让座。|少先队员应该为老人让座。|
|
25 |
+
|
26 |
+
在CSC测试集上生成结果纠错准确率高,由于是基于ChatGLM3-6B模型,结果常常能带给人惊喜,不仅能纠错,还带有句子润色和改写功能。
|
27 |
+
|
28 |
+
|
29 |
+
## Usage
|
30 |
+
|
31 |
+
本项目开源在 pycorrector 项目:[textgen](https://github.com/shibing624/pycorrector),可支持ChatGLM原生模型和LoRA微调后的模型,通过如下命令调用:
|
32 |
+
|
33 |
+
Install package:
|
34 |
+
```shell
|
35 |
+
pip install -U pycorrector
|
36 |
+
```
|
37 |
+
|
38 |
+
```python
|
39 |
+
from pycorrector.gpt.gpt_model import GptModel
|
40 |
+
model = GptModel("chatglm", "THUDM/chatglm3-6b", peft_name="shibing624/chatglm3-6b-csc-chinese-lora")
|
41 |
+
r = model.predict(["对下面文本纠错:\n少先队员因该为老人让坐。"])
|
42 |
+
print(r) # ['少先队员应该为老人让座。']
|
43 |
+
```
|
44 |
+
|
45 |
+
## Usage (HuggingFace Transformers)
|
46 |
+
Without [pycorrector](https://github.com/shibing624/pycorrector), you can use the model like this:
|
47 |
+
|
48 |
+
First, you pass your input through the transformer model, then you get the generated sentence.
|
49 |
+
|
50 |
+
Install package:
|
51 |
+
```
|
52 |
+
pip install transformers
|
53 |
+
```
|
54 |
+
|
55 |
+
```python
|
56 |
+
import sys
|
57 |
+
from peft import PeftModel
|
58 |
+
from transformers import AutoModel, AutoTokenizer
|
59 |
+
|
60 |
+
sys.path.append('..')
|
61 |
+
|
62 |
+
model = AutoModel.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True, device_map='auto')
|
63 |
+
model = PeftModel.from_pretrained(model, "shibing624/chatglm3-6b-csc-chinese-lora")
|
64 |
+
model = model.half().cuda() # fp16
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True)
|
66 |
+
|
67 |
+
sents = ['对下面中文拼写纠错:\n少先队员因该为老人让坐。',
|
68 |
+
'对下面中文拼写纠错:\n下个星期,我跟我朋唷打算去法国玩儿。']
|
69 |
+
for s in sents:
|
70 |
+
response = model.chat(tokenizer, s, max_length=128, eos_token_id=tokenizer.eos_token_id)
|
71 |
+
print(response)
|
72 |
+
```
|
73 |
+
|
74 |
+
output:
|
75 |
+
```shell
|
76 |
+
少先队员应该为老人让座。
|
77 |
+
下个星期,我跟我朋友打算去法国玩儿。
|
78 |
+
```
|
79 |
+
|
80 |
+
|
81 |
+
模型文件组成:
|
82 |
+
```
|
83 |
+
chatglm3-6b-csc-chinese-lora
|
84 |
+
├── adapter_config.json
|
85 |
+
└── adapter_model.bin
|
86 |
+
```
|
87 |
+
|
88 |
+
#### 训练参数:
|
89 |
+
|
90 |
+
![loss](train_loss.png)
|
91 |
+
|
92 |
+
- num_epochs: 5
|
93 |
+
- per_device_train_batch_size: 6
|
94 |
+
- learning_rate: 2e-05
|
95 |
+
- best steps: 25100
|
96 |
+
- train_loss: 0.0834
|
97 |
+
- lr_scheduler_type: linear
|
98 |
+
- base model: THUDM/chatglm3-6b
|
99 |
+
- warmup_steps: 50
|
100 |
+
- "save_strategy": "steps"
|
101 |
+
- "save_steps": 500
|
102 |
+
- "save_total_limit": 10
|
103 |
+
- "bf16": false
|
104 |
+
- "fp16": true
|
105 |
+
- "optim": "adamw_torch"
|
106 |
+
- "ddp_find_unused_parameters": false
|
107 |
+
- "gradient_checkpointing": true
|
108 |
+
- max_seq_length: 512
|
109 |
+
- max_length: 512
|
110 |
+
- prompt_template_name: vicuna
|
111 |
+
- 6 * V100 32GB, training 48 hours
|
112 |
+
|
113 |
+
### 训练数据集
|
114 |
+
训练集包括以下数据:
|
115 |
+
|
116 |
+
- 中文拼写纠错数据集:https://huggingface.co/datasets/shibing624/CSC
|
117 |
+
- 中文语法纠错数据集:https://github.com/shibing624/pycorrector/tree/llm/examples/data/grammar
|
118 |
+
- 通用GPT4问答数据集:https://huggingface.co/datasets/shibing624/sharegpt_gpt4
|
119 |
+
|
120 |
+
|
121 |
+
如果需要训练GPT模型,请参考[https://github.com/shibing624/pycorrector](https://github.com/shibing624/pycorrector)
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
## Citation
|
126 |
+
|
127 |
+
```latex
|
128 |
+
@software{pycorrector,
|
129 |
+
author = {Ming Xu},
|
130 |
+
title = {pycorrector: Text Error Correction Tool},
|
131 |
+
year = {2023},
|
132 |
+
url = {https://github.com/shibing624/pycorrector},
|
133 |
+
}
|
134 |
+
```
|