shibing624
commited on
Commit
•
6c45ec3
1
Parent(s):
3c58203
Update README.md
Browse files
README.md
CHANGED
@@ -1,202 +1,149 @@
|
|
1 |
---
|
2 |
library_name: peft
|
3 |
base_model: Qwen/Qwen2.5-1.5B-Instruct
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for Model ID
|
7 |
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
|
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
|
|
|
|
15 |
|
16 |
-
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
35 |
|
36 |
-
|
|
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
|
|
43 |
|
44 |
-
|
45 |
|
46 |
-
|
|
|
|
|
|
|
47 |
|
48 |
-
|
|
|
|
|
|
|
49 |
|
50 |
-
|
|
|
|
|
51 |
|
52 |
-
|
53 |
|
54 |
-
|
|
|
55 |
|
56 |
-
|
57 |
|
58 |
-
|
|
|
59 |
|
60 |
-
|
|
|
61 |
|
62 |
-
|
|
|
|
|
|
|
63 |
|
64 |
-
### Recommendations
|
65 |
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
Use the code below to get started with the model.
|
73 |
|
74 |
-
[More Information Needed]
|
75 |
|
76 |
-
|
|
|
77 |
|
78 |
-
|
79 |
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
|
82 |
-
[
|
83 |
|
84 |
-
###
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
|
195 |
-
|
196 |
|
197 |
-
##
|
198 |
|
199 |
-
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
-
- PEFT 0.11.1
|
|
|
1 |
---
|
2 |
library_name: peft
|
3 |
base_model: Qwen/Qwen2.5-1.5B-Instruct
|
4 |
+
license: apache-2.0
|
5 |
+
datasets:
|
6 |
+
- shibing624/chinese_text_correction
|
7 |
+
language:
|
8 |
+
- zh
|
9 |
+
metrics:
|
10 |
+
- f1
|
11 |
+
tags:
|
12 |
+
- text-generation-inference
|
13 |
+
widget:
|
14 |
+
- text: "文本纠错:\n少先队员因该为老人让坐。"
|
15 |
---
|
16 |
|
|
|
17 |
|
|
|
18 |
|
19 |
+
# Chinese Text Correction Model
|
20 |
+
中文文本纠错模型chinese-text-correction-1.5b-lora:用于拼写纠错、语法纠错
|
21 |
|
22 |
+
`shibing624/chinese-text-correction-1.5b-lora` evaluate test data:
|
23 |
|
24 |
+
The overall performance of CSC **test**:
|
25 |
|
26 |
+
|input_text|predict_text|
|
27 |
+
|:--- |:--- |
|
28 |
+
|文本纠错:\n少先队员因该为老人让坐。|少先队员应该为老人让座。|
|
29 |
|
30 |
+
# Models
|
31 |
|
32 |
+
| Name | Base Model | Download |
|
33 |
+
|-----------------|-------------------|-----------------------------------------------------------------------|
|
34 |
+
| chinese-text-correction-1.5b | Qwen/Qwen2.5-1.5B-Instruct | [🤗 Hugging Face](https://huggingface.co/shibing624/chinese-text-correction-1.5b) |
|
35 |
+
| chinese-text-correction-1.5b-lora | Qwen/Qwen2.5-1.5B-Instruct | [🤗 Hugging Face](https://huggingface.co/shibing624/chinese-text-correction-1.5b-lora) |
|
36 |
+
| chinese-text-correction-7b | Qwen/Qwen2.5-7B-Instruct | [🤗 Hugging Face](https://huggingface.co/shibing624/chinese-text-correction-7b) |
|
37 |
+
| chinese-text-correction-7b-lora | Qwen/Qwen2.5-7B-Instruct | [🤗 Hugging Face](https://huggingface.co/shibing624/chinese-text-correction-7b-lora) |
|
38 |
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
## Usage (pycorrector)
|
42 |
|
43 |
+
本项目开源在`pycorrector`项目:[pycorrector](https://github.com/shibing624/pycorrector),可支持大模型微调后用于文本纠错,通过如下命令调用:
|
44 |
|
45 |
+
Install package:
|
46 |
+
```shell
|
47 |
+
pip install -U pycorrector
|
48 |
+
```
|
49 |
|
50 |
+
```python
|
51 |
+
from pycorrector.gpt.gpt_corrector import GptCorrector
|
52 |
|
53 |
+
if __name__ == '__main__':
|
54 |
+
error_sentences = [
|
55 |
+
'真麻烦你了。希望你们好好的跳无',
|
56 |
+
'少先队员因该为老人让坐',
|
57 |
+
'机七学习是人工智能领遇最能体现智能的一个分知',
|
58 |
+
'一只小鱼船浮在平净的河面上',
|
59 |
+
'我的家乡是有明的渔米之乡',
|
60 |
+
]
|
61 |
+
m = GptCorrector("shibing624/chinese-text-correction-1.5b")
|
62 |
|
63 |
+
batch_res = m.correct_batch(error_sentences)
|
64 |
+
for i in batch_res:
|
65 |
+
print(i)
|
66 |
+
print()
|
67 |
+
```
|
68 |
|
69 |
+
## Usage (HuggingFace Transformers)
|
70 |
+
Without [pycorrector](https://github.com/shibing624/pycorrector), you can use the model like this:
|
71 |
|
72 |
+
First, you pass your input through the transformer model, then you get the generated sentence.
|
73 |
|
74 |
+
Install package:
|
75 |
+
```
|
76 |
+
pip install transformers
|
77 |
+
```
|
78 |
|
79 |
+
```python
|
80 |
+
# pip install transformers
|
81 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
82 |
+
checkpoint = "shibing624/chinese-text-correction-1.5b"
|
83 |
|
84 |
+
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
85 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
86 |
+
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
|
87 |
|
88 |
+
input_content = "文本纠错:\n少先队员因该为老人让坐。"
|
89 |
|
90 |
+
messages = [{"role": "user", "content": input_content}]
|
91 |
+
input_text=tokenizer.apply_chat_template(messages, tokenize=False)
|
92 |
|
93 |
+
print(input_text)
|
94 |
|
95 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
96 |
+
outputs = model.generate(inputs, max_new_tokens=1024, temperature=0, do_sample=False, repetition_penalty=1.08)
|
97 |
|
98 |
+
print(tokenizer.decode(outputs[0]))
|
99 |
+
```
|
100 |
|
101 |
+
output:
|
102 |
+
```shell
|
103 |
+
少先队员应该为老人让座。
|
104 |
+
```
|
105 |
|
|
|
106 |
|
107 |
+
模型文件组成:
|
108 |
+
```
|
109 |
+
shibing624/chinese-text-correction-1.5b-lora
|
110 |
+
├── adapter_config.json
|
111 |
+
└── adapter_model.bin
|
112 |
+
```
|
113 |
|
114 |
+
#### 训练参数:
|
115 |
|
116 |
+
- num_epochs: 8
|
117 |
+
- batch_size: 4
|
118 |
+
- steps: 36000
|
119 |
+
- train_loss: 0.1055
|
120 |
+
- eval_loss:
|
121 |
+
- base model: Qwen/Qwen2.5-1.5B-Instruct
|
122 |
+
- train data: [shibing624/chinese_text_correction](https://huggingface.co/datasets/shibing624/chinese_text_correction)
|
123 |
+
- train time: 9 days 8 hours
|
124 |
|
|
|
125 |
|
|
|
126 |
|
127 |
+
### 训练数据集
|
128 |
+
#### 中文纠错数据集
|
129 |
|
130 |
+
- 数据:[shibing624/chinese_text_correction](https://huggingface.co/datasets/shibing624/chinese_text_correction)
|
131 |
|
|
|
132 |
|
133 |
+
如果需要训练Qwen的纠错模型,请参考[https://github.com/shibing624/pycorrector](https://github.com/shibing624/pycorrector)
|
134 |
|
135 |
+
### Framework versions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
+
- PEFT 0.11.1
|
138 |
|
139 |
+
## Citation
|
140 |
|
141 |
+
```latex
|
142 |
+
@software{pycorrector,
|
143 |
+
author = {Xu Ming},
|
144 |
+
title = {pycorrector: Implementation of language model finetune},
|
145 |
+
year = {2024},
|
146 |
+
url = {https://github.com/shibing624/pycorrector},
|
147 |
+
}
|
148 |
+
```
|
149 |
|
|