shibing624 commited on
Commit
e45934f
·
verified ·
1 Parent(s): b636fd7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -6
README.md CHANGED
@@ -20,8 +20,11 @@ widget:
20
 
21
  `macbert4csc-base-chinese` evaluate SIGHAN2015 test data:
22
 
23
- - Char Level: precision:0.9372, recall:0.8640, f1:0.8991
24
- - Sentence Level: precision:0.8264, recall:0.7366, f1:0.7789
 
 
 
25
 
26
  由于训练使用的数据使用了SIGHAN2015的训练集(复现paper),在SIGHAN2015的测试集上达到SOTA水平。
27
 
@@ -36,15 +39,14 @@ widget:
36
  ```python
37
  from pycorrector.macbert.macbert_corrector import MacBertCorrector
38
 
39
- nlp = MacBertCorrector("shibing624/macbert4csc-base-chinese").macbert_correct
40
 
41
- i = nlp('今天新情很好')
42
  print(i)
43
  ```
44
 
45
- 当然,你也可使用官方的huggingface/transformers调用:
46
 
47
- *Please use 'Bert' related functions to load this model!*
48
 
49
  ```python
50
  import operator
 
20
 
21
  `macbert4csc-base-chinese` evaluate SIGHAN2015 test data:
22
 
23
+ | | Correct-Precision | Correct-Recall | Correct-F1 |
24
+ |--|--|--|--|
25
+ | Chararcter-level | 93.72 | 86.40 | 89.91 |
26
+ | Sentence-level | 82.64 | 73.66 | 77.89 |
27
+
28
 
29
  由于训练使用的数据使用了SIGHAN2015的训练集(复现paper),在SIGHAN2015的测试集上达到SOTA水平。
30
 
 
39
  ```python
40
  from pycorrector.macbert.macbert_corrector import MacBertCorrector
41
 
42
+ m = MacBertCorrector("shibing624/macbert4csc-base-chinese")
43
 
44
+ i = m.correct('今天新情很好')
45
  print(i)
46
  ```
47
 
48
+ 当然,你也可使用`transformers`调用:
49
 
 
50
 
51
  ```python
52
  import operator