shibing624 commited on
Commit
6e062de
1 Parent(s): c6e875c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +133 -0
README.md CHANGED
@@ -1,3 +1,136 @@
1
  ---
 
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ pipeline_tag: sentence-similarity
3
  license: apache-2.0
4
+ tags:
5
+ - text2vec
6
+ - feature-extraction
7
+ - sentence-similarity
8
+ - transformers
9
+ datasets:
10
+ - https://huggingface.co/datasets/shibing624/nli-zh-all/tree/main/text2vec-base-chinese-paraphrase-dataset
11
+ language:
12
+ - zh
13
+ metrics:
14
+ - spearmanr
15
+ library_name: transformers
16
  ---
17
+ # shibing624/text2vec-base-chinese-paraphrase
18
+ This is a CoSENT(Cosine Sentence) model: shibing624/text2vec-base-chinese-paraphrase.
19
+
20
+ It maps sentences to a 768 dimensional dense vector space and can be used for tasks
21
+ like sentence embeddings, text matching or semantic search.
22
+
23
+ - training dataset: https://huggingface.co/datasets/shibing624/nli-zh-all/tree/main/text2vec-base-chinese-paraphrase-dataset
24
+ - base model: nghuyong/ernie-3.0-base-zh
25
+ - max_seq_length: 256
26
+ - best epoch: 3
27
+ - sentence embedding dim: 768
28
+
29
+ ## Evaluation
30
+ For an automated evaluation of this model, see the *Evaluation Benchmark*: [text2vec](https://github.com/shibing624/text2vec)
31
+
32
+ ### Release Models
33
+ - 本项目release模型的中文匹配评测结果:
34
+
35
+ | Arch | BaseModel | Model | ATEC | BQ | LCQMC | PAWSX | STS-B | SOHU-dd | SOHU-dc | Avg | QPS |
36
+ |:-----------|:----------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------|:-----:|:-----:|:-----:|:-----:|:-----:|:-------:|:-------:|:---------:|:-----:|
37
+ | Word2Vec | word2vec | [w2v-light-tencent-chinese](https://ai.tencent.com/ailab/nlp/en/download.html) | 20.00 | 31.49 | 59.46 | 2.57 | 55.78 | 55.04 | 20.70 | 35.03 | 23769 |
38
+ | SBERT | xlm-roberta-base | [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) | 18.42 | 38.52 | 63.96 | 10.14 | 78.90 | 63.01 | 52.28 | 46.46 | 3138 |
39
+ | Instructor | hfl/chinese-roberta-wwm-ext | [moka-ai/m3e-base](https://huggingface.co/moka-ai/m3e-base) | 41.27 | 63.81 | 74.87 | 12.20 | 76.96 | 75.83 | 60.55 | 57.93 | 2980 |
40
+ | CoSENT | hfl/chinese-macbert-base | [shibing624/text2vec-base-chinese](https://huggingface.co/shibing624/text2vec-base-chinese) | 31.93 | 42.67 | 70.16 | 17.21 | 79.30 | 70.27 | 50.42 | 51.61 | 3008 |
41
+ | CoSENT | hfl/chinese-lert-large | [GanymedeNil/text2vec-large-chinese](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 32.61 | 44.59 | 69.30 | 14.51 | 79.44 | 73.01 | 59.04 | 53.12 | 2092 |
42
+ | CoSENT | nghuyong/ernie-3.0-base-zh | [shibing624/text2vec-base-chinese-sentence](https://huggingface.co/shibing624/text2vec-base-chinese-sentence) | 51.26 | 68.72 | 79.13 | 34.28 | 80.70 | 70.34 | 54.91 | 60.09 | 3066 |
43
+ | CoSENT | nghuyong/ernie-3.0-base-zh | [shibing624/text2vec-base-chinese-paraphrase](https://huggingface.co/shibing624/text2vec-base-chinese-paraphrase) | 44.89 | 63.58 | 74.24 | 40.90 | 78.93 | 76.70 | 63.30 | **63.08** | 3066 |
44
+
45
+
46
+
47
+ ## Usage (text2vec)
48
+ Using this model becomes easy when you have [text2vec](https://github.com/shibing624/text2vec) installed:
49
+
50
+ ```
51
+ pip install -U text2vec
52
+ ```
53
+
54
+ Then you can use the model like this:
55
+
56
+ ```python
57
+ from text2vec import SentenceModel
58
+ sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
59
+ model = SentenceModel('shibing624/text2vec-base-chinese-paraphrase')
60
+ embeddings = model.encode(sentences)
61
+ print(embeddings)
62
+ ```
63
+
64
+ ## Usage (HuggingFace Transformers)
65
+ Without [text2vec](https://github.com/shibing624/text2vec), you can use the model like this:
66
+
67
+ First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
68
+
69
+ Install transformers:
70
+ ```
71
+ pip install transformers
72
+ ```
73
+
74
+ Then load model and predict:
75
+ ```python
76
+ from transformers import BertTokenizer, BertModel
77
+ import torch
78
+ # Mean Pooling - Take attention mask into account for correct averaging
79
+ def mean_pooling(model_output, attention_mask):
80
+ token_embeddings = model_output[0] # First element of model_output contains all token embeddings
81
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
82
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
83
+ # Load model from HuggingFace Hub
84
+ tokenizer = BertTokenizer.from_pretrained('shibing624/text2vec-base-chinese-paraphrase')
85
+ model = BertModel.from_pretrained('shibing624/text2vec-base-chinese-paraphrase')
86
+ sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
87
+ # Tokenize sentences
88
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
89
+ # Compute token embeddings
90
+ with torch.no_grad():
91
+ model_output = model(**encoded_input)
92
+ # Perform pooling. In this case, mean pooling.
93
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
94
+ print("Sentence embeddings:")
95
+ print(sentence_embeddings)
96
+ ```
97
+
98
+ ## Usage (sentence-transformers)
99
+ [sentence-transformers](https://github.com/UKPLab/sentence-transformers) is a popular library to compute dense vector representations for sentences.
100
+
101
+ Install sentence-transformers:
102
+ ```
103
+ pip install -U sentence-transformers
104
+ ```
105
+
106
+ Then load model and predict:
107
+
108
+ ```python
109
+ from sentence_transformers import SentenceTransformer
110
+ m = SentenceTransformer("shibing624/text2vec-base-chinese-paraphrase")
111
+ sentences = ['如何更换花呗绑定银行卡', '花呗更改绑定银行卡']
112
+ sentence_embeddings = m.encode(sentences)
113
+ print("Sentence embeddings:")
114
+ print(sentence_embeddings)
115
+ ```
116
+
117
+
118
+ ## Full Model Architecture
119
+ ```
120
+ CoSENT(
121
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
122
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_mean_tokens': True})
123
+ )
124
+ ```
125
+ ## Citing & Authors
126
+ This model was trained by [text2vec](https://github.com/shibing624/text2vec).
127
+
128
+ If you find this model helpful, feel free to cite:
129
+ ```bibtex
130
+ @software{text2vec,
131
+ author = {Ming Xu},
132
+ title = {text2vec: A Tool for Text to Vector},
133
+ year = {2023},
134
+ url = {https://github.com/shibing624/text2vec},
135
+ }
136
+ ```