shibing624
commited on
Commit
•
021a4bf
1
Parent(s):
e8ab03f
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,184 @@
|
|
1 |
---
|
|
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
license: apache-2.0
|
4 |
+
tags:
|
5 |
+
- text2vec
|
6 |
+
- feature-extraction
|
7 |
+
- sentence-similarity
|
8 |
+
- transformers
|
9 |
+
datasets:
|
10 |
+
- https://huggingface.co/datasets/shibing624/nli-zh-all/tree/main/text2vec-base-multilingual-dataset
|
11 |
+
language:
|
12 |
+
- zh
|
13 |
+
metrics:
|
14 |
+
- spearmanr
|
15 |
+
library_name: transformers
|
16 |
---
|
17 |
+
# shibing624/text2vec-base-multilingual
|
18 |
+
This is a CoSENT(Cosine Sentence) model: shibing624/text2vec-base-multilingual.
|
19 |
+
|
20 |
+
It maps sentences to a 384 dimensional dense vector space and can be used for tasks
|
21 |
+
like sentence embeddings, text matching or semantic search.
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
- training dataset: https://huggingface.co/datasets/shibing624/nli-zh-all/tree/main/text2vec-base-multilingual-dataset
|
26 |
+
- base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
|
27 |
+
- max_seq_length: 256
|
28 |
+
- best epoch: 4
|
29 |
+
- sentence embedding dim: 384
|
30 |
+
|
31 |
+
## Evaluation
|
32 |
+
For an automated evaluation of this model, see the *Evaluation Benchmark*: [text2vec](https://github.com/shibing624/text2vec)
|
33 |
+
|
34 |
+
### Release Models
|
35 |
+
|
36 |
+
- 本项目release模型的中文匹配评测结果:
|
37 |
+
|
38 |
+
| Arch | BaseModel | Model | ATEC | BQ | LCQMC | PAWSX | STS-B | SOHU-dd | SOHU-dc | Avg | QPS |
|
39 |
+
|:-----------|:-------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------|:-----:|:-----:|:-----:|:-----:|:-----:|:-------:|:-------:|:---------:|:-----:|
|
40 |
+
| Word2Vec | word2vec | [w2v-light-tencent-chinese](https://ai.tencent.com/ailab/nlp/en/download.html) | 20.00 | 31.49 | 59.46 | 2.57 | 55.78 | 55.04 | 20.70 | 35.03 | 23769 |
|
41 |
+
| SBERT | xlm-roberta-base | [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) | 18.42 | 38.52 | 63.96 | 10.14 | 78.90 | 63.01 | 52.28 | 46.46 | 3138 |
|
42 |
+
| Instructor | hfl/chinese-roberta-wwm-ext | [moka-ai/m3e-base](https://huggingface.co/moka-ai/m3e-base) | 41.27 | 63.81 | 74.87 | 12.20 | 76.96 | 75.83 | 60.55 | 57.93 | 2980 |
|
43 |
+
| CoSENT | hfl/chinese-macbert-base | [shibing624/text2vec-base-chinese](https://huggingface.co/shibing624/text2vec-base-chinese) | 31.93 | 42.67 | 70.16 | 17.21 | 79.30 | 70.27 | 50.42 | 51.61 | 3008 |
|
44 |
+
| CoSENT | hfl/chinese-lert-large | [GanymedeNil/text2vec-large-chinese](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 32.61 | 44.59 | 69.30 | 14.51 | 79.44 | 73.01 | 59.04 | 53.12 | 2092 |
|
45 |
+
| CoSENT | nghuyong/ernie-3.0-base-zh | [shibing624/text2vec-base-chinese-sentence](https://huggingface.co/shibing624/text2vec-base-chinese-sentence) | 43.37 | 61.43 | 73.48 | 38.90 | 78.25 | 70.60 | 53.08 | 59.87 | 3089 |
|
46 |
+
| CoSENT | nghuyong/ernie-3.0-base-zh | [shibing624/text2vec-base-chinese-paraphrase](https://huggingface.co/shibing624/text2vec-base-chinese-paraphrase) | 44.89 | 63.58 | 74.24 | 40.90 | 78.93 | 76.70 | 63.30 | **63.08** | 3066 |
|
47 |
+
| CoSENT | sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 | [shibing624/text2vec-base-multilingual](https://huggingface.co/shibing624/text2vec-base-multilingual) | 32.39 | 50.33 | 65.64 | 32.56 | 74.45 | 68.88 | 51.17 | 53.67 | 4004 |
|
48 |
+
|
49 |
+
|
50 |
+
说明:
|
51 |
+
- 结果评测指标:spearman系数
|
52 |
+
- `shibing624/text2vec-base-chinese`模型,是用CoSENT方法训练,基于`hfl/chinese-macbert-base`在中文STS-B数据训练得到,并在中文STS-B测试集评估达到较好效果,运行[examples/training_sup_text_matching_model.py](https://github.com/shibing624/text2vec/blob/master/examples/training_sup_text_matching_model.py)代码可训练模型,模型文件已经上传HF model hub,中文通用语义匹配任务推荐使用
|
53 |
+
- `shibing624/text2vec-base-chinese-sentence`模型,是用CoSENT方法训练,基于`nghuyong/ernie-3.0-base-zh`用人工挑选后的中文STS数据集[shibing624/nli-zh-all/text2vec-base-chinese-sentence-dataset](https://huggingface.co/datasets/shibing624/nli-zh-all/tree/main/text2vec-base-chinese-sentence-dataset)训练得到,并在中文各NLI测试集评估达到较好效果,运行[examples/training_sup_text_matching_model_jsonl_data.py](https://github.com/shibing624/text2vec/blob/master/examples/training_sup_text_matching_model_jsonl_data.py)代码可训练模型,模型文件已经上传HF model hub,中文s2s(句子vs句子)语义匹配任务推荐使用
|
54 |
+
- `shibing624/text2vec-base-chinese-paraphrase`模型,是用CoSENT方法训练,基于`nghuyong/ernie-3.0-base-zh`用人工挑选后的中文STS数据集[shibing624/nli-zh-all/text2vec-base-chinese-paraphrase-dataset](https://huggingface.co/datasets/shibing624/nli-zh-all/tree/main/text2vec-base-chinese-paraphrase-dataset),数据集相对于[shibing624/nli-zh-all/text2vec-base-chinese-sentence-dataset](https://huggingface.co/datasets/shibing624/nli-zh-all/tree/main/text2vec-base-chinese-sentence-dataset)加入了s2p(sentence to paraphrase)数据,强化了其长文本的表征能力,并在中文各NLI测试集评估达到SOTA,运行[examples/training_sup_text_matching_model_jsonl_data.py](https://github.com/shibing624/text2vec/blob/master/examples/training_sup_text_matching_model_jsonl_data.py)代码可训练模型,模型文件已经上传HF model hub,中文s2p(句子vs段落)语义匹配任务推荐使用
|
55 |
+
- `shibing624/text2vec-base-multilingual`模型,是用CoSENT方法训练,基于`sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2`用人工挑选后的多语言STS数据集[shibing624/nli-zh-all/text2vec-base-multilingual-dataset](https://huggingface.co/datasets/shibing624/nli-zh-all/tree/main/text2vec-base-multilingual-dataset)训练得到,并在中英文测试集评估相对于原模型效果有提升,运行[examples/training_sup_text_matching_model_jsonl_data.py](https://github.com/shibing624/text2vec/blob/master/examples/training_sup_text_matching_model_jsonl_data.py)代码可训练模型,模型文件已经上传HF model hub,多语言语义匹配任务推荐使用
|
56 |
+
- `w2v-light-tencent-chinese`是腾讯词向量的Word2Vec模型,CPU加载使用,适用于中文字面匹配任务和缺少数据的冷启动情况
|
57 |
+
- 各预训练模型均可以通过transformers调用,如MacBERT模型:`--model_name hfl/chinese-macbert-base` 或者roberta模型:`--model_name uer/roberta-medium-wwm-chinese-cluecorpussmall`
|
58 |
+
- 为测评模型的鲁棒性,加入了未训练过的SOHU测试集,用于测试模型的泛化能力;为达到开箱即用的实用效果,使用了搜集到的各中文匹配数据集,数据集也上传到HF datasets[链接见下方](#数据集)
|
59 |
+
- 中文匹配任务实验表明,pooling最优是`EncoderType.FIRST_LAST_AVG`和`EncoderType.MEAN`,两者预测效果差异很小
|
60 |
+
- 中文匹配评测结果复现,可以下载中文匹配数据集到`examples/data`,运行[tests/test_model_spearman.py](https://github.com/shibing624/text2vec/blob/master/tests/test_model_spearman.py)代码复现评测结果
|
61 |
+
- QPS的GPU测试环境是Tesla V100,显存32GB
|
62 |
+
|
63 |
+
模型训练实验报告:[实验报告](https://github.com/shibing624/text2vec/blob/master/docs/model_report.md)
|
64 |
+
|
65 |
+
## Usage (text2vec)
|
66 |
+
Using this model becomes easy when you have [text2vec](https://github.com/shibing624/text2vec) installed:
|
67 |
+
|
68 |
+
```
|
69 |
+
pip install -U text2vec
|
70 |
+
```
|
71 |
+
|
72 |
+
Then you can use the model like this:
|
73 |
+
|
74 |
+
```python
|
75 |
+
from text2vec import SentenceModel
|
76 |
+
sentences = ['如何更换花呗绑定银行卡', 'How to replace the Huabei bundled bank card']
|
77 |
+
|
78 |
+
model = SentenceModel('shibing624/text2vec-base-multilingual')
|
79 |
+
embeddings = model.encode(sentences)
|
80 |
+
print(embeddings)
|
81 |
+
```
|
82 |
+
|
83 |
+
## Usage (HuggingFace Transformers)
|
84 |
+
Without [text2vec](https://github.com/shibing624/text2vec), you can use the model like this:
|
85 |
+
|
86 |
+
First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
87 |
+
|
88 |
+
Install transformers:
|
89 |
+
```
|
90 |
+
pip install transformers
|
91 |
+
```
|
92 |
+
|
93 |
+
Then load model and predict:
|
94 |
+
```python
|
95 |
+
from transformers import AutoTokenizer, AutoModel
|
96 |
+
import torch
|
97 |
+
|
98 |
+
# Mean Pooling - Take attention mask into account for correct averaging
|
99 |
+
def mean_pooling(model_output, attention_mask):
|
100 |
+
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
|
101 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
102 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
103 |
+
|
104 |
+
# Load model from HuggingFace Hub
|
105 |
+
tokenizer = AutoTokenizer.from_pretrained('shibing624/text2vec-base-multilingual')
|
106 |
+
model = AutoModel.from_pretrained('shibing624/text2vec-base-multilingual')
|
107 |
+
sentences = ['如何更换花呗绑定银行卡', 'How to replace the Huabei bundled bank card']
|
108 |
+
# Tokenize sentences
|
109 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
110 |
+
|
111 |
+
# Compute token embeddings
|
112 |
+
with torch.no_grad():
|
113 |
+
model_output = model(**encoded_input)
|
114 |
+
# Perform pooling. In this case, mean pooling.
|
115 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
116 |
+
print("Sentence embeddings:")
|
117 |
+
print(sentence_embeddings)
|
118 |
+
```
|
119 |
+
|
120 |
+
## Usage (sentence-transformers)
|
121 |
+
[sentence-transformers](https://github.com/UKPLab/sentence-transformers) is a popular library to compute dense vector representations for sentences.
|
122 |
+
|
123 |
+
Install sentence-transformers:
|
124 |
+
```
|
125 |
+
pip install -U sentence-transformers
|
126 |
+
```
|
127 |
+
|
128 |
+
Then load model and predict:
|
129 |
+
|
130 |
+
```python
|
131 |
+
from sentence_transformers import SentenceTransformer
|
132 |
+
|
133 |
+
m = SentenceTransformer("shibing624/text2vec-base-multilingual")
|
134 |
+
sentences = ['如何更换花呗绑定银行卡', 'How to replace the Huabei bundled bank card']
|
135 |
+
|
136 |
+
sentence_embeddings = m.encode(sentences)
|
137 |
+
print("Sentence embeddings:")
|
138 |
+
print(sentence_embeddings)
|
139 |
+
```
|
140 |
+
|
141 |
+
|
142 |
+
## Full Model Architecture
|
143 |
+
```
|
144 |
+
CoSENT(
|
145 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
146 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_mean_tokens': True})
|
147 |
+
)
|
148 |
+
```
|
149 |
+
|
150 |
+
|
151 |
+
## Intended uses
|
152 |
+
|
153 |
+
Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures
|
154 |
+
the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks.
|
155 |
+
|
156 |
+
By default, input text longer than 256 word pieces is truncated.
|
157 |
+
|
158 |
+
|
159 |
+
## Training procedure
|
160 |
+
|
161 |
+
### Pre-training
|
162 |
+
|
163 |
+
We use the pretrained [`sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2`](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) model.
|
164 |
+
Please refer to the model card for more detailed information about the pre-training procedure.
|
165 |
+
|
166 |
+
### Fine-tuning
|
167 |
+
|
168 |
+
We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each
|
169 |
+
possible sentence pairs from the batch.
|
170 |
+
We then apply the rank loss by comparing with true pairs and false pairs.
|
171 |
+
|
172 |
+
|
173 |
+
## Citing & Authors
|
174 |
+
This model was trained by [text2vec](https://github.com/shibing624/text2vec).
|
175 |
+
|
176 |
+
If you find this model helpful, feel free to cite:
|
177 |
+
```bibtex
|
178 |
+
@software{text2vec,
|
179 |
+
author = {Ming Xu},
|
180 |
+
title = {text2vec: A Tool for Text to Vector},
|
181 |
+
year = {2023},
|
182 |
+
url = {https://github.com/shibing624/text2vec},
|
183 |
+
}
|
184 |
+
```
|