Shilong Dai commited on
Commit
dede09f
1 Parent(s): 6996058

Adds files

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
8
+
9
+ ---
10
+
11
+ # {MODEL_NAME}
12
+
13
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
+
15
+ <!--- Describe your model here -->
16
+
17
+ ## Usage (Sentence-Transformers)
18
+
19
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
20
+
21
+ ```
22
+ pip install -U sentence-transformers
23
+ ```
24
+
25
+ Then you can use the model like this:
26
+
27
+ ```python
28
+ from sentence_transformers import SentenceTransformer
29
+ sentences = ["This is an example sentence", "Each sentence is converted"]
30
+
31
+ model = SentenceTransformer('{MODEL_NAME}')
32
+ embeddings = model.encode(sentences)
33
+ print(embeddings)
34
+ ```
35
+
36
+
37
+
38
+ ## Usage (HuggingFace Transformers)
39
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
40
+
41
+ ```python
42
+ from transformers import AutoTokenizer, AutoModel
43
+ import torch
44
+
45
+
46
+ def cls_pooling(model_output, attention_mask):
47
+ return model_output[0][:,0]
48
+
49
+
50
+ # Sentences we want sentence embeddings for
51
+ sentences = ['This is an example sentence', 'Each sentence is converted']
52
+
53
+ # Load model from HuggingFace Hub
54
+ tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
55
+ model = AutoModel.from_pretrained('{MODEL_NAME}')
56
+
57
+ # Tokenize sentences
58
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
59
+
60
+ # Compute token embeddings
61
+ with torch.no_grad():
62
+ model_output = model(**encoded_input)
63
+
64
+ # Perform pooling. In this case, cls pooling.
65
+ sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
66
+
67
+ print("Sentence embeddings:")
68
+ print(sentence_embeddings)
69
+ ```
70
+
71
+
72
+
73
+ ## Evaluation Results
74
+
75
+ <!--- Describe how your model was evaluated -->
76
+
77
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
78
+
79
+
80
+ ## Training
81
+ The model was trained with the parameters:
82
+
83
+ **DataLoader**:
84
+
85
+ `torch.utils.data.dataloader.DataLoader` of length 707 with parameters:
86
+ ```
87
+ {'batch_size': 40, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
88
+ ```
89
+
90
+ **Loss**:
91
+
92
+ `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
93
+ ```
94
+ {'scale': 20.0, 'similarity_fct': 'cos_sim'}
95
+ ```
96
+
97
+ Parameters of the fit()-Method:
98
+ ```
99
+ {
100
+ "epochs": 10,
101
+ "evaluation_steps": 0,
102
+ "evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator",
103
+ "max_grad_norm": 1,
104
+ "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
105
+ "optimizer_params": {
106
+ "lr": 2e-05
107
+ },
108
+ "scheduler": "WarmupLinear",
109
+ "steps_per_epoch": null,
110
+ "warmup_steps": 100,
111
+ "weight_decay": 0.01
112
+ }
113
+ ```
114
+
115
+
116
+ ## Full Model Architecture
117
+ ```
118
+ SentenceTransformer(
119
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
120
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
121
+ )
122
+ ```
123
+
124
+ ## Citing & Authors
125
+
126
+ <!--- Describe where people can find more information -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/llmrails_ember-v1/",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 4096,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 16,
24
+ "num_hidden_layers": 24,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.34.1",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.2.2",
4
+ "transformers": "4.28.1",
5
+ "pytorch": "1.13.0+cu117"
6
+ }
7
+ }
eval/.ipynb_checkpoints/Information-Retrieval_evaluation_results-checkpoint.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ epoch,steps,cos_sim-Accuracy@2,cos_sim-Accuracy@3,cos_sim-Precision@2,cos_sim-Recall@2,cos_sim-Precision@3,cos_sim-Recall@3,cos_sim-MRR@2,cos_sim-MRR@3,cos_sim-NDCG@2,cos_sim-NDCG@3,cos_sim-MAP@2,cos_sim-MAP@3,dot_score-Accuracy@2,dot_score-Accuracy@3,dot_score-Precision@2,dot_score-Recall@2,dot_score-Precision@3,dot_score-Recall@3,dot_score-MRR@2,dot_score-MRR@3,dot_score-NDCG@2,dot_score-NDCG@3,dot_score-MAP@2,dot_score-MAP@3
2
+ 0,-1,0.786,0.836,0.725,0.41561682557208873,0.632,0.5025919050247998,0.761,0.7776666666666665,0.7274892382408401,0.7234027733369421,0.7125,0.6920555555555555,0.798,0.842,0.728,0.4199918255720887,0.6273333333333333,0.5010919050247997,0.768,0.7826666666666665,0.7302629438553092,0.7215898868321315,0.713,0.6884444444444444
eval/Information-Retrieval_evaluation_results.csv ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ epoch,steps,cos_sim-Accuracy@2,cos_sim-Accuracy@3,cos_sim-Precision@2,cos_sim-Recall@2,cos_sim-Precision@3,cos_sim-Recall@3,cos_sim-MRR@2,cos_sim-MRR@3,cos_sim-NDCG@2,cos_sim-NDCG@3,cos_sim-MAP@2,cos_sim-MAP@3,dot_score-Accuracy@2,dot_score-Accuracy@3,dot_score-Precision@2,dot_score-Recall@2,dot_score-Precision@3,dot_score-Recall@3,dot_score-MRR@2,dot_score-MRR@3,dot_score-NDCG@2,dot_score-NDCG@3,dot_score-MAP@2,dot_score-MAP@3
2
+ 0,-1,0.786,0.836,0.725,0.41561682557208873,0.632,0.5025919050247998,0.761,0.7776666666666665,0.7274892382408401,0.7234027733369421,0.7125,0.6920555555555555,0.798,0.842,0.728,0.4199918255720887,0.6273333333333333,0.5010919050247997,0.768,0.7826666666666665,0.7302629438553092,0.7215898868321315,0.713,0.6884444444444444
3
+ 1,-1,0.792,0.844,0.722,0.4120584922387554,0.6253333333333333,0.5017419050247998,0.769,0.786333333333333,0.7274310652527419,0.7214298121189583,0.7105,0.6867222222222221,0.794,0.854,0.715,0.41153349223875535,0.6233333333333334,0.49912523835813305,0.764,0.7839999999999998,0.7192995933250874,0.7161653355461067,0.7,0.6788333333333334
4
+ 2,-1,0.792,0.834,0.723,0.41603349223875535,0.624,0.49796690502479973,0.769,0.7829999999999999,0.7282047708672111,0.7196515586578535,0.7115,0.6868333333333334,0.784,0.834,0.721,0.41703349223875535,0.622,0.49793357169146646,0.761,0.7776666666666664,0.7248470045540256,0.7167630710706907,0.7095,0.6841111111111111
5
+ 3,-1,0.79,0.832,0.718,0.40955015890542207,0.6226666666666666,0.4977335716914664,0.764,0.7779999999999998,0.7225258877106183,0.7163430927842974,0.705,0.6825,0.776,0.83,0.706,0.4021334922387554,0.6193333333333333,0.4941002383581331,0.761,0.7789999999999998,0.7150517754212367,0.7133938756354776,0.6985,0.6786666666666668
6
+ 4,-1,0.788,0.832,0.72,0.4083168255720887,0.624,0.4968002383581331,0.766,0.7806666666666666,0.7254310652527419,0.718241191059222,0.709,0.6845,0.78,0.822,0.713,0.406500158905422,0.6153333333333333,0.48854190502479977,0.763,0.7769999999999999,0.7204677147225202,0.7108012281050157,0.7045,0.6773888888888889
7
+ 5,-1,0.794,0.842,0.716,0.41035849223875537,0.622,0.49775023835813303,0.762,0.7779999999999999,0.7191681213974328,0.7146432262568708,0.7,0.6785555555555556,0.794,0.842,0.713,0.409150158905422,0.616,0.4938057939136887,0.769,0.7849999999999998,0.7200151259514584,0.7126128614760423,0.7005,0.6751666666666665
8
+ 6,-1,0.776,0.82,0.705,0.40117238112764425,0.612,0.4905696828025775,0.755,0.7696666666666665,0.7115625371803966,0.7058558458165342,0.6945,0.6716666666666666,0.782,0.82,0.707,0.40187238112764423,0.6093333333333334,0.48663079391368863,0.759,0.7716666666666665,0.7135625371803966,0.7040330941931987,0.6955,0.6694444444444444
9
+ 7,-1,0.774,0.828,0.71,0.4034501589054221,0.614,0.49326412724702196,0.752,0.7699999999999998,0.7145258877106182,0.7075484037989945,0.699,0.6727777777777777,0.778,0.826,0.711,0.4061168255720887,0.614,0.4934307939136886,0.755,0.7709999999999999,0.7157521820961493,0.7083807661100918,0.6995,0.6739444444444443
10
+ 8,-1,0.786,0.816,0.717,0.40840015890542203,0.614,0.48805579391368864,0.766,0.7759999999999999,0.7235625371803965,0.7105357528291434,0.707,0.6781111111111111,0.784,0.818,0.71,0.4055057144609776,0.6146666666666666,0.48976412724702195,0.764,0.7753333333333332,0.7176940091080513,0.7098669640688429,0.7,0.6768333333333333
11
+ 9,-1,0.786,0.828,0.71,0.4060057144609776,0.6173333333333333,0.4930641272470219,0.764,0.7779999999999999,0.7172414203369893,0.7122232228174816,0.699,0.6771111111111111,0.794,0.822,0.715,0.40917238112764426,0.614,0.4899807939136886,0.769,0.7783333333333333,0.7215625371803965,0.710337521081645,0.7025,0.6763888888888889
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74ad1b39955b087a6b578ba0db790af95707e28e16feda07e72d62cdc2a3022e
3
+ size 1340699369
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff