File size: 2,285 Bytes
c9ff4d7 ea1937f c9ff4d7 ea1937f c9ff4d7 ea1937f c9ff4d7 ea1937f c9ff4d7 ea1937f c9ff4d7 ea1937f c9ff4d7 ea1937f c9ff4d7 ea1937f c9ff4d7 ea1937f c9ff4d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
---
language:
- uz
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
model-index:
- name: Whisper Small Uzbek
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_11_0 uz
type: mozilla-foundation/common_voice_11_0
config: uz
split: test
args: uz
metrics:
- name: Wer
type: wer
value: 25.785707218942715
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Uzbek
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the mozilla-foundation/common_voice_11_0 uz dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4357
- Wer: 25.7857
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 8000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.3621 | 1.03 | 1000 | 0.4819 | 32.3209 |
| 0.2378 | 2.07 | 2000 | 0.4413 | 29.0077 |
| 0.2342 | 4.01 | 3000 | 0.4224 | 27.3939 |
| 0.1286 | 5.04 | 4000 | 0.4357 | 25.7857 |
| 0.1192 | 6.08 | 5000 | 0.4727 | 27.2752 |
| 0.0147 | 8.02 | 6000 | 0.5230 | 26.7267 |
| 0.0425 | 9.05 | 7000 | 0.5336 | 26.3628 |
| 0.0059 | 10.08 | 8000 | 0.5658 | 26.8476 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.1+cu117
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|