01-ai-bot commited on
Commit
3ec17ea
·
1 Parent(s): e0bab64

Sync README

Browse files
Files changed (1) hide show
  1. README.md +268 -0
README.md ADDED
@@ -0,0 +1,268 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+ <p align="center">
3
+ <img src="https://github.com/01-ai/Yi/raw/main/assets/img/Yi.svg?sanitize=true" width="200px">
4
+ </p>
5
+ <a href="https://github.com/01-ai/Yi/actions/workflows/ci.yml">
6
+ <img src="https://github.com/01-ai/Yi/actions/workflows/ci.yml/badge.svg">
7
+ </a>
8
+ <a href="https://huggingface.co/01-ai">
9
+ <img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-01--ai-blue">
10
+ </a>
11
+ <a href="https://www.modelscope.cn/organization/01ai/">
12
+ <img src="https://img.shields.io/badge/ModelScope-01--ai-blue">
13
+ </a>
14
+ <a href="https://github.com/01-ai/Yi/blob/main/LICENSE">
15
+ <img src="https://img.shields.io/badge/Code_License-Apache_2.0-lightblue">
16
+ </a>
17
+ <a href="https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt">
18
+ <img src="https://img.shields.io/badge/Model_License-Model_Agreement-lightblue">
19
+ </a>
20
+ <a href="mailto:oss@01.ai">
21
+ <img src="https://img.shields.io/badge/✉️-yi@01.ai-FFE01B">
22
+ </a>
23
+ </div>
24
+
25
+ ## Introduction
26
+
27
+ The **Yi** series models are large language models trained from scratch by
28
+ developers at [01.AI](https://01.ai/).
29
+
30
+ ## News
31
+
32
+ <details open>
33
+ <summary>🔥 <b>2023/11/08</b>: Invited test of Yi-34B chat model.</summary>
34
+
35
+ Application form:
36
+
37
+ - [English](https://cn.mikecrm.com/l91ODJf)
38
+ - [Chinese](https://cn.mikecrm.com/gnEZjiQ)
39
+
40
+ </details>
41
+
42
+ <details>
43
+ <summary>🎯 <b>2023/11/05</b>: The base model of <code>Yi-6B-200K</code> and <code>Yi-34B-200K</code>.</summary>
44
+
45
+ This release contains two base models with the same parameter sizes of previous
46
+ release, except that the context window is extended to 200K.
47
+
48
+ </details>
49
+
50
+ <details>
51
+ <summary>🎯 <b>2023/11/02</b>: The base model of <code>Yi-6B</code> and <code>Yi-34B</code>.</summary>
52
+
53
+ The first public release contains two bilingual (English/Chinese) base models
54
+ with the parameter sizes of 6B and 34B. Both of them are trained with 4K
55
+ sequence length and can be extended to 32K during inference time.
56
+
57
+ </details>
58
+
59
+ ## Model Performance
60
+
61
+
62
+ | Model | MMLU | CMMLU | C-Eval | GAOKAO | BBH | Common-sense Reasoning | Reading Comprehension | Math & Code |
63
+ | :------------ | :------: | :------: | :------: | :------: | :------: | :--------------------: | :-------------------: | :---------: |
64
+ | | 5-shot | 5-shot | 5-shot | 0-shot | 3-shot@1 | - | - | - |
65
+ | LLaMA2-34B | 62.6 | - | - | - | 44.1 | 69.9 | 68.0 | 26.0 |
66
+ | LLaMA2-70B | 68.9 | 53.3 | - | 49.8 | 51.2 | 71.9 | 69.4 | 36.8 |
67
+ | Baichuan2-13B | 59.2 | 62.0 | 58.1 | 54.3 | 48.8 | 64.3 | 62.4 | 23.0 |
68
+ | Qwen-14B | 66.3 | 71.0 | 72.1 | 62.5 | 53.4 | 73.3 | 72.5 | **39.8** |
69
+ | Skywork-13B | 62.1 | 61.8 | 60.6 | 68.1 | 41.7 | 72.4 | 61.4 | 24.9 |
70
+ | InternLM-20B | 62.1 | 59.0 | 58.8 | 45.5 | 52.5 | 78.3 | - | 30.4 |
71
+ | Aquila-34B | 67.8 | 71.4 | 63.1 | - | - | - | - | - |
72
+ | Falcon-180B | 70.4 | 58.0 | 57.8 | 59.0 | 54.0 | 77.3 | 68.8 | 34.0 |
73
+ | Yi-6B | 63.2 | 75.5 | 72.0 | 72.2 | 42.8 | 72.3 | 68.7 | 19.8 |
74
+ | Yi-6B-200K | 64.0 | 75.3 | 73.5 | 73.9 | 42.0 | 72.0 | 69.1 | 19.0 |
75
+ | **Yi-34B** | **76.3** | **83.7** | 81.4 | 82.8 | **54.3** | **80.1** | 76.4 | 37.1 |
76
+ | Yi-34B-200K | 76.1 | 83.6 | **81.9** | **83.4** | 52.7 | 79.7 | **76.6** | 36.3 |
77
+
78
+ While benchmarking open-source models, we have observed a disparity between the
79
+ results generated by our pipeline and those reported in public sources (e.g.
80
+ OpenCompass). Upon conducting a more in-depth investigation of this difference,
81
+ we have discovered that various models may employ different prompts,
82
+ post-processing strategies, and sampling techniques, potentially resulting in
83
+ significant variations in the outcomes. Our prompt and post-processing strategy
84
+ remains consistent with the original benchmark, and greedy decoding is employed
85
+ during evaluation without any post-processing for the generated content. For
86
+ scores that were not reported by the original authors (including scores reported
87
+ with different settings), we try to get results with our pipeline.
88
+
89
+ To evaluate the model's capability extensively, we adopted the methodology
90
+ outlined in Llama2. Specifically, we included PIQA, SIQA, HellaSwag, WinoGrande,
91
+ ARC, OBQA, and CSQA to assess common sense reasoning. SquAD, QuAC, and BoolQ
92
+ were incorporated to evaluate reading comprehension. CSQA was exclusively tested
93
+ using a 7-shot setup, while all other tests were conducted with a 0-shot
94
+ configuration. Additionally, we introduced GSM8K (8-shot@1), MATH (4-shot@1),
95
+ HumanEval (0-shot@1), and MBPP (3-shot@1) under the category "Math & Code". Due
96
+ to technical constraints, we did not test Falcon-180 on QuAC and OBQA; the score
97
+ is derived by averaging the scores on the remaining tasks. Since the scores for
98
+ these two tasks are generally lower than the average, we believe that
99
+ Falcon-180B's performance was not underestimated.
100
+
101
+ ## Usage
102
+
103
+ Feel free to [create an issue](https://github.com/01-ai/Yi/issues/new) if you
104
+ encounter any problem when using the **Yi** series models.
105
+
106
+ ### 1. Prepare development environment
107
+
108
+ The best approach to try the **Yi** series models is through Docker with GPUs. We
109
+ provide the following docker images to help you get started.
110
+
111
+ - `registry.lingyiwanwu.com/ci/01-ai/yi:latest`
112
+
113
+ Note that the `latest` tag always points to the latest code in the `main`
114
+ branch. To test a stable version, please replace it with a specific
115
+ [tag](https://github.com/01-ai/Yi/tags).
116
+
117
+ If you prefer to try out with your local development environment. First, create
118
+ a virtual environment and clone this repo. Then install the dependencies with
119
+ `pip install -r requirements.txt`. For the best performance, we recommend you
120
+ also install the latest version (`>=2.3.3`) of
121
+ [flash-attention](https://github.com/Dao-AILab/flash-attention#installation-and-features).
122
+
123
+ ### 2. Download the model (optional)
124
+
125
+ By default, the model weights and tokenizer will be downloaded from
126
+ [HuggingFace](https://huggingface.co/01-ai) automatically in the next step. You
127
+ can also download them manually from the following places:
128
+
129
+ - [ModelScope](https://www.modelscope.cn/organization/01ai/)
130
+ - [WiseModel](https://wisemodel.cn/models) (Search for `Yi`)
131
+ - Mirror site (remember to extract the content with `tar`)
132
+ - [Yi-6B.tar](https://storage.lingyiwanwu.com/yi/models/Yi-6B.tar)
133
+ - [Yi-6B-200K.tar](https://storage.lingyiwanwu.com/yi/models/Yi-6B-200K.tar)
134
+ - [Yi-34B.tar](https://storage.lingyiwanwu.com/yi/models/Yi-34B.tar)
135
+ - [Yi-34B-200K.tar](https://storage.lingyiwanwu.com/yi/models/Yi-34B-200K.tar)
136
+
137
+ ### 3. Examples
138
+
139
+ #### 3.1 Use the base model
140
+
141
+ ```bash
142
+ python demo/text_generation.py
143
+ ```
144
+
145
+ To reuse the downloaded models in the previous step, you can provide the extra
146
+ `--model` argument:
147
+
148
+ ```bash
149
+ python demo/text_generation.py --model /path/to/model
150
+ ```
151
+
152
+ Or if you'd like to get your hands dirty:
153
+
154
+ ```python
155
+ from transformers import AutoModelForCausalLM, AutoTokenizer
156
+
157
+ model = AutoModelForCausalLM.from_pretrained("01-ai/Yi-34B", device_map="auto", torch_dtype="auto", trust_remote_code=True)
158
+ tokenizer = AutoTokenizer.from_pretrained("01-ai/Yi-34B", trust_remote_code=True)
159
+ inputs = tokenizer("There's a place where time stands still. A place of breath taking wonder, but also", return_tensors="pt")
160
+ max_length = 256
161
+
162
+ outputs = model.generate(
163
+ inputs.input_ids.cuda(),
164
+ max_length=max_length,
165
+ eos_token_id=tokenizer.eos_token_id,
166
+ do_sample=True,
167
+ repetition_penalty=1.3,
168
+ no_repeat_ngram_size=5,
169
+ temperature=0.7,
170
+ top_k=40,
171
+ top_p=0.8,
172
+ )
173
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
174
+ ```
175
+
176
+ <details>
177
+
178
+ <summary>Output</summary>
179
+
180
+ **Prompt**: There's a place where time stands still. A place of breath taking wonder, but also
181
+
182
+ **Generation**: There's a place where time stands still. A place of breath taking wonder, but also of great danger. A place where the very air you breathe could kill you. A place where the only way to survive is to be prepared.
183
+ The place is called the Arctic.
184
+ The Arctic is a vast, frozen wilderness. It is a place of extremes. The temperatures can drop to -40 degrees Celsius. The winds can reach speeds of 100 kilometers per hour. The sun can shine for 24 hours a day, or not at all for weeks on end.
185
+ The Arctic is also a place of great beauty. The ice and snow are a pristine white. The sky is a deep blue. The sunsets are spectacular.
186
+ But the Arctic is also a place of great danger. The ice can be treacherous. The winds can be deadly. The sun can be blinding.
187
+ The Arctic is a place where the only way to survive is to be prepared.
188
+ The Arctic is a place of extremes. The temperatures can drop to -40 degrees Celsius. The winds can reach speeds of 100 kilometers per hour. The sun can shine for 24 hours a day, or not at all for weeks on end.
189
+ The Arctic is a place of great beauty. The ice and snow are a
190
+
191
+ </details>
192
+
193
+ For more advanced usage, please refer to the
194
+ [doc](https://github.com/01-ai/Yi/tree/main/demo).
195
+
196
+ #### 3.2 Finetuning from the base model:
197
+
198
+ ```bash
199
+ bash finetune/scripts/run_sft_Yi_6b.sh
200
+ ```
201
+
202
+ Once finished, you can compare the finetuned model and the base model with the following command:
203
+
204
+ ```bash
205
+ bash finetune/scripts/run_eval.sh
206
+ ```
207
+
208
+ For more advanced usage like fine-tuning based on your custom data, please refer
209
+ the [doc](https://github.com/01-ai/Yi/tree/main/finetune).
210
+
211
+ #### 3.3 Quantization
212
+
213
+ ##### GPT-Q
214
+ ```bash
215
+ python quantization/gptq/quant_autogptq.py \
216
+ --model /base_model \
217
+ --output_dir /quantized_model \
218
+ --trust_remote_code
219
+ ```
220
+
221
+ Once finished, you can then evaluate the resulting model as follows:
222
+
223
+ ```bash
224
+ python quantization/gptq/eval_quantized_model.py \
225
+ --model /quantized_model \
226
+ --trust_remote_code
227
+ ```
228
+
229
+ For a more detailed explanation, please read the [doc](https://github.com/01-ai/Yi/tree/main/quantization/gptq)
230
+
231
+ ##### AWQ
232
+ ```bash
233
+ python quantization/awq/quant_autoawq.py \
234
+ --model /base_model \
235
+ --output_dir /quantized_model \
236
+ --trust_remote_code
237
+ ```
238
+
239
+ Once finished, you can then evaluate the resulted model as follows:
240
+
241
+ ```bash
242
+ python quantization/awq/eval_quantized_model.py \
243
+ --model /quantized_model \
244
+ --trust_remote_code
245
+ ```
246
+
247
+ For more detailed explanation, please read the [doc](https://github.com/01-ai/Yi/tree/main/quantization/awq)
248
+
249
+ ## Disclaimer
250
+
251
+ We use data compliance checking algorithms during the training process, to
252
+ ensure the compliance of the trained model to the best of our ability. Due to
253
+ complex data and the diversity of language model usage scenarios, we cannot
254
+ guarantee that the model will generate correct, and reasonable output in all
255
+ scenarios. Please be aware that there is still a risk of the model producing
256
+ problematic outputs. We will not be responsible for any risks and issues
257
+ resulting from misuse, misguidance, illegal usage, and related misinformation,
258
+ as well as any associated data security concerns.
259
+
260
+ ## License
261
+
262
+ The source code in this repo is licensed under the [Apache 2.0
263
+ license](https://github.com/01-ai/Yi/blob/main/LICENSE). The Yi series models
264
+ are fully open for academic research and free commercial usage with permission
265
+ via applications. All usage must adhere to the [Model License
266
+ Agreement 2.0](https://github.com/01-ai/Yi/blob/main/MODEL_LICENSE_AGREEMENT.txt).
267
+ To apply for the official commercial license, please contact us
268
+ ([yi@01.ai](mailto:yi@01.ai)).