wuji3 commited on
Commit
6472452
1 Parent(s): 3799988

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -143
README.md CHANGED
@@ -1,143 +1,30 @@
1
- ---
2
- language: []
3
- library_name: sentence-transformers
4
- tags:
5
- - sentence-transformers
6
- - sentence-similarity
7
- - feature-extraction
8
- widget: []
9
- pipeline_tag: sentence-similarity
10
- ---
11
-
12
- # SentenceTransformer
13
-
14
- This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
15
-
16
- ## Model Details
17
-
18
- ### Model Description
19
- - **Model Type:** Sentence Transformer
20
- <!-- - **Base model:** [Unknown](https://huggingface.co/unknown) -->
21
- - **Maximum Sequence Length:** 512 tokens
22
- - **Output Dimensionality:** 1024 tokens
23
- - **Similarity Function:** Cosine Similarity
24
- <!-- - **Training Dataset:** Unknown -->
25
- <!-- - **Language:** Unknown -->
26
- <!-- - **License:** Unknown -->
27
-
28
- ### Model Sources
29
-
30
- - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
31
- - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
32
- - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
33
-
34
- ### Full Model Architecture
35
-
36
- ```
37
- SentenceTransformer(
38
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
39
- (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
40
- (2): Normalize()
41
- )
42
- ```
43
-
44
- ## Usage
45
-
46
- ### Direct Usage (Sentence Transformers)
47
-
48
- First install the Sentence Transformers library:
49
-
50
- ```bash
51
- pip install -U sentence-transformers
52
- ```
53
-
54
- Then you can load this model and run inference.
55
- ```python
56
- from sentence_transformers import SentenceTransformer
57
-
58
- # Download from the 🤗 Hub
59
- model = SentenceTransformer("sentence_transformers_model_id")
60
- # Run inference
61
- sentences = [
62
- 'The weather is lovely today.',
63
- "It's so sunny outside!",
64
- 'He drove to the stadium.',
65
- ]
66
- embeddings = model.encode(sentences)
67
- print(embeddings.shape)
68
- # [3, 1024]
69
-
70
- # Get the similarity scores for the embeddings
71
- similarities = model.similarity(embeddings, embeddings)
72
- print(similarities.shape)
73
- # [3, 3]
74
- ```
75
-
76
- <!--
77
- ### Direct Usage (Transformers)
78
-
79
- <details><summary>Click to see the direct usage in Transformers</summary>
80
-
81
- </details>
82
- -->
83
-
84
- <!--
85
- ### Downstream Usage (Sentence Transformers)
86
-
87
- You can finetune this model on your own dataset.
88
-
89
- <details><summary>Click to expand</summary>
90
-
91
- </details>
92
- -->
93
-
94
- <!--
95
- ### Out-of-Scope Use
96
-
97
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
98
- -->
99
-
100
- <!--
101
- ## Bias, Risks and Limitations
102
-
103
- *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
104
- -->
105
-
106
- <!--
107
- ### Recommendations
108
-
109
- *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
110
- -->
111
-
112
- ## Training Details
113
-
114
- ### Framework Versions
115
- - Python: 3.10.14
116
- - Sentence Transformers: 3.0.0
117
- - Transformers: 4.41.2
118
- - PyTorch: 2.3.1+cu121
119
- - Accelerate: 0.30.1
120
- - Datasets: 2.19.2
121
- - Tokenizers: 0.19.1
122
-
123
- ## Citation
124
-
125
- ### BibTeX
126
-
127
- <!--
128
- ## Glossary
129
-
130
- *Clearly define terms in order to be accessible across audiences.*
131
- -->
132
-
133
- <!--
134
- ## Model Card Authors
135
-
136
- *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
137
- -->
138
-
139
- <!--
140
- ## Model Card Contact
141
-
142
- *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
143
- -->
 
1
+ machine[g0271]: /home/duke/shoppal-bge/embedding-sft-output/2024-06-07-12-00-09
2
+ - source2.3
3
+ - MRR@1: 0.6451
4
+ - MRR@3: 0.7159
5
+ - MRR@5: 0.7289
6
+ - MRR@10: 0.7372
7
+ - MRR@100: 0.7405
8
+ - Recall@1: 0.4601
9
+ - Recall@3: 0.6209
10
+ - Recall@5: 0.6955
11
+ - Recall@10: 0.7937
12
+ - Recall@100: 0.9731
13
+ - AUC@100: 0.9231
14
+ - nDCG@1: 0.6465
15
+ - nDCG@3: 0.686
16
+ - nDCG@5: 0.7131
17
+ - nDCG@10: 0.7479
18
+ - nDCG@100: 0.8158
19
+ - msmarco
20
+ - MRR@1: 0.2149
21
+ - MRR@3: 0.3004
22
+ - MRR@5: 0.3221
23
+ - MRR@10: 0.3372
24
+ - MRR@100: 0.3486
25
+ - Recall@1: 0.2089
26
+ - Recall@3: 0.4016
27
+ - Recall@5: 0.4963
28
+ - Recall@10: 0.6072
29
+ - Recall@100: 0.8798
30
+ - AUC@100: 0.7846