shredder-31 commited on
Commit
c049366
1 Parent(s): edcee34

Create handler.py

Browse files
Files changed (1) hide show
  1. handler.py +34 -0
handler.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List, Any
2
+
3
+ class EndpointHandler():
4
+ def __init__(self , path=""):
5
+ # Preload all the elements you are going to need at inference.
6
+ # pseudo:
7
+ # self.model= load_model(path)
8
+ bnb_config = BitsAndBytesConfig(
9
+ load_in_4bit=True,
10
+ bnb_4bit_use_double_quant=True,
11
+ bnb_4bit_quant_type="nf4",
12
+ bnb_4bit_compute_dtype=torch.bfloat16
13
+ )
14
+ model = AutoModelForCausalLM.from_pretrained(path, quantization_config=bnb_config, device_map={"":0})
15
+ tokenizer = AutoTokenizer.from_pretrained(path, add_eos_token=True)
16
+ self.model = model
17
+ self.tokenizer = tokenizer
18
+
19
+
20
+ def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
21
+ """
22
+ data args:
23
+ inputs (:obj: `str` | `PIL.Image` | `np.array`)
24
+ kwargs
25
+ Return:
26
+ A :obj:`list` | `dict`: will be serialized and returned
27
+ """
28
+
29
+
30
+ encodeds = self.tokenizer(data['inputs'], return_tensors="pt", add_special_tokens=True)
31
+ generated_ids = self.model.generate(**encodeds, max_new_tokens=data['max_new_tokens'], do_sample=False)
32
+ decoded = self.tokenizer.decode(generated_ids[0], skip_special_tokens=True)
33
+
34
+ return {'output':decoded[len(data['inputs']):]}