--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.450 tags: - generated_from_trainer metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.450_ESC50 results: [] --- # ast-finetuned-audioset-10-10-0.450_ESC50 This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.450](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.450) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2887 - Accuracy: 0.9275 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 24 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.7745 | 0.99 | 66 | 2.3340 | 0.605 | | 0.7521 | 1.99 | 133 | 0.8978 | 0.8875 | | 0.2307 | 3.0 | 200 | 0.5545 | 0.8975 | | 0.0903 | 4.0 | 267 | 0.4063 | 0.925 | | 0.03 | 4.99 | 333 | 0.3488 | 0.92 | | 0.0123 | 5.99 | 400 | 0.2987 | 0.925 | | 0.0101 | 7.0 | 467 | 0.2887 | 0.9275 | | 0.0067 | 8.0 | 534 | 0.2808 | 0.9275 | | 0.0055 | 8.99 | 600 | 0.2784 | 0.9275 | | 0.0051 | 9.89 | 660 | 0.2778 | 0.9275 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2