File size: 2,602 Bytes
b7e635a 8c4a689 b7e635a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
from typing import Dict, Final, Optional, Tuple, Union
import torch
import torch.nn as nn
from transformers import CLIPVisionModelWithProjection, logging
from transformers.modeling_outputs import ImageClassifierOutputWithNoAttention
from .configuration_predictor import AestheticsPredictorConfig
logging.set_verbosity_error()
URLS: Final[Dict[str, str]] = {
"openai/clip-vit-base-patch16": "https://github.com/LAION-AI/aesthetic-predictor/raw/main/sa_0_4_vit_b_16_linear.pth",
"openai/clip-vit-base-patch32": "https://github.com/LAION-AI/aesthetic-predictor/raw/main/sa_0_4_vit_b_32_linear.pth",
"openai/clip-vit-large-patch14": "https://github.com/LAION-AI/aesthetic-predictor/raw/main/sa_0_4_vit_l_14_linear.pth",
}
class AestheticsPredictorV1(CLIPVisionModelWithProjection):
def __init__(self, config: AestheticsPredictorConfig) -> None:
super().__init__(config)
self.predictor = nn.Linear(config.projection_dim, 1)
self.post_init()
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
outputs = super().forward(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeds = outputs[0] # image_embeds
image_embeds /= image_embeds.norm(dim=-1, keepdim=True)
prediction = self.predictor(image_embeds)
if not return_dict:
return (None, prediction, image_embeds)
return ImageClassifierOutputWithNoAttention(
loss=None,
logits=prediction,
hidden_states=image_embeds,
)
def convert_from_openai_clip(
openai_model_name: str, config: Optional[AestheticsPredictorConfig] = None
) -> AestheticsPredictorV1:
config = config or AestheticsPredictorConfig.from_pretrained(openai_model_name)
model = AestheticsPredictorV1(config)
clip_model = CLIPVisionModelWithProjection.from_pretrained(openai_model_name)
model.load_state_dict(clip_model.state_dict(), strict=False)
state_dict = torch.hub.load_state_dict_from_url(URLS[openai_model_name])
model.predictor.load_state_dict(state_dict)
model.eval()
return model
|