shunxing1234
commited on
Commit
•
f3802e8
1
Parent(s):
f65b4f1
Upload ZEN/modeling.py
Browse files- ZEN/modeling.py +1357 -0
ZEN/modeling.py
ADDED
@@ -0,0 +1,1357 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding: utf-8
|
2 |
+
# Copyright 2019 Sinovation Ventures AI Institute
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
#
|
16 |
+
# This file is partially derived from the code at
|
17 |
+
# https://github.com/huggingface/transformers/tree/master/transformers
|
18 |
+
#
|
19 |
+
# Original copyright notice:
|
20 |
+
#
|
21 |
+
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
|
22 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
23 |
+
#
|
24 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
25 |
+
# you may not use this file except in compliance with the License.
|
26 |
+
# You may obtain a copy of the License at
|
27 |
+
#
|
28 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
29 |
+
#
|
30 |
+
# Unless required by applicable law or agreed to in writing, software
|
31 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
32 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
33 |
+
# See the License for the specific language governing permissions and
|
34 |
+
# limitations under the License.
|
35 |
+
"""PyTorch ZEN model classes."""
|
36 |
+
|
37 |
+
from __future__ import absolute_import, division, print_function, unicode_literals
|
38 |
+
|
39 |
+
import copy
|
40 |
+
import json
|
41 |
+
import logging
|
42 |
+
import math
|
43 |
+
import os
|
44 |
+
import sys
|
45 |
+
from io import open
|
46 |
+
|
47 |
+
import torch
|
48 |
+
from torch import nn
|
49 |
+
from torch.nn import CrossEntropyLoss
|
50 |
+
|
51 |
+
from .file_utils import cached_path, WEIGHTS_NAME, CONFIG_NAME
|
52 |
+
|
53 |
+
logger = logging.getLogger(__name__)
|
54 |
+
|
55 |
+
PRETRAINED_MODEL_ARCHIVE_MAP = {
|
56 |
+
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin",
|
57 |
+
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin",
|
58 |
+
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin",
|
59 |
+
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin",
|
60 |
+
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin",
|
61 |
+
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin",
|
62 |
+
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin",
|
63 |
+
'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-pytorch_model.bin",
|
64 |
+
'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin",
|
65 |
+
'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin",
|
66 |
+
'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin",
|
67 |
+
'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin",
|
68 |
+
'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin",
|
69 |
+
}
|
70 |
+
PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
71 |
+
'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json",
|
72 |
+
'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-config.json",
|
73 |
+
'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json",
|
74 |
+
'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-config.json",
|
75 |
+
'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-config.json",
|
76 |
+
'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-config.json",
|
77 |
+
'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.json",
|
78 |
+
'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-config.json",
|
79 |
+
'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-config.json",
|
80 |
+
'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-config.json",
|
81 |
+
'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-config.json",
|
82 |
+
'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-config.json",
|
83 |
+
'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-config.json",
|
84 |
+
}
|
85 |
+
BERT_CONFIG_NAME = 'bert_config.json'
|
86 |
+
TF_WEIGHTS_NAME = 'model.ckpt'
|
87 |
+
|
88 |
+
|
89 |
+
def prune_linear_layer(layer, index, dim=0):
|
90 |
+
""" Prune a linear layer (a model parameters) to keep only entries in index.
|
91 |
+
Return the pruned layer as a new layer with requires_grad=True.
|
92 |
+
Used to remove heads.
|
93 |
+
"""
|
94 |
+
index = index.to(layer.weight.device)
|
95 |
+
W = layer.weight.index_select(dim, index).clone().detach()
|
96 |
+
if layer.bias is not None:
|
97 |
+
if dim == 1:
|
98 |
+
b = layer.bias.clone().detach()
|
99 |
+
else:
|
100 |
+
b = layer.bias[index].clone().detach()
|
101 |
+
new_size = list(layer.weight.size())
|
102 |
+
new_size[dim] = len(index)
|
103 |
+
new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device)
|
104 |
+
new_layer.weight.requires_grad = False
|
105 |
+
new_layer.weight.copy_(W.contiguous())
|
106 |
+
new_layer.weight.requires_grad = True
|
107 |
+
if layer.bias is not None:
|
108 |
+
new_layer.bias.requires_grad = False
|
109 |
+
new_layer.bias.copy_(b.contiguous())
|
110 |
+
new_layer.bias.requires_grad = True
|
111 |
+
return new_layer
|
112 |
+
|
113 |
+
|
114 |
+
def load_tf_weights_in_bert(model, tf_checkpoint_path):
|
115 |
+
""" Load tf checkpoints in a pytorch model
|
116 |
+
"""
|
117 |
+
try:
|
118 |
+
import re
|
119 |
+
import numpy as np
|
120 |
+
import tensorflow as tf
|
121 |
+
except ImportError:
|
122 |
+
print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
|
123 |
+
"https://www.tensorflow.org/install/ for installation instructions.")
|
124 |
+
raise
|
125 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
126 |
+
print("Converting TensorFlow checkpoint from {}".format(tf_path))
|
127 |
+
# Load weights from TF model
|
128 |
+
init_vars = tf.train.list_variables(tf_path)
|
129 |
+
names = []
|
130 |
+
arrays = []
|
131 |
+
for name, shape in init_vars:
|
132 |
+
print("Loading TF weight {} with shape {}".format(name, shape))
|
133 |
+
array = tf.train.load_variable(tf_path, name)
|
134 |
+
names.append(name)
|
135 |
+
arrays.append(array)
|
136 |
+
|
137 |
+
for name, array in zip(names, arrays):
|
138 |
+
name = name.split('/')
|
139 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
140 |
+
# which are not required for using pretrained model
|
141 |
+
if any(n in ["adam_v", "adam_m", "global_step"] for n in name):
|
142 |
+
print("Skipping {}".format("/".join(name)))
|
143 |
+
continue
|
144 |
+
pointer = model
|
145 |
+
for m_name in name:
|
146 |
+
if re.fullmatch(r'[A-Za-z]+_\d+', m_name):
|
147 |
+
l = re.split(r'_(\d+)', m_name)
|
148 |
+
else:
|
149 |
+
l = [m_name]
|
150 |
+
if l[0] == 'kernel' or l[0] == 'gamma':
|
151 |
+
pointer = getattr(pointer, 'weight')
|
152 |
+
elif l[0] == 'output_bias' or l[0] == 'beta':
|
153 |
+
pointer = getattr(pointer, 'bias')
|
154 |
+
elif l[0] == 'output_weights':
|
155 |
+
pointer = getattr(pointer, 'weight')
|
156 |
+
elif l[0] == 'squad':
|
157 |
+
pointer = getattr(pointer, 'classifier')
|
158 |
+
else:
|
159 |
+
try:
|
160 |
+
pointer = getattr(pointer, l[0])
|
161 |
+
except AttributeError:
|
162 |
+
print("Skipping {}".format("/".join(name)))
|
163 |
+
continue
|
164 |
+
if len(l) >= 2:
|
165 |
+
num = int(l[1])
|
166 |
+
pointer = pointer[num]
|
167 |
+
if m_name[-11:] == '_embeddings':
|
168 |
+
pointer = getattr(pointer, 'weight')
|
169 |
+
elif m_name == 'kernel':
|
170 |
+
array = np.transpose(array)
|
171 |
+
try:
|
172 |
+
assert pointer.shape == array.shape
|
173 |
+
except AssertionError as e:
|
174 |
+
e.args += (pointer.shape, array.shape)
|
175 |
+
raise
|
176 |
+
print("Initialize PyTorch weight {}".format(name))
|
177 |
+
pointer.data = torch.from_numpy(array)
|
178 |
+
return model
|
179 |
+
|
180 |
+
|
181 |
+
def gelu(x):
|
182 |
+
"""Implementation of the gelu activation function.
|
183 |
+
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
|
184 |
+
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
|
185 |
+
Also see https://arxiv.org/abs/1606.08415
|
186 |
+
"""
|
187 |
+
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
|
188 |
+
|
189 |
+
|
190 |
+
def swish(x):
|
191 |
+
return x * torch.sigmoid(x)
|
192 |
+
|
193 |
+
|
194 |
+
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}
|
195 |
+
|
196 |
+
|
197 |
+
class ZenConfig(object):
|
198 |
+
|
199 |
+
"""Configuration class to store the configuration of a `ZenModel`.
|
200 |
+
"""
|
201 |
+
|
202 |
+
def __init__(self,
|
203 |
+
vocab_size_or_config_json_file,
|
204 |
+
word_vocab_size,
|
205 |
+
hidden_size=768,
|
206 |
+
num_hidden_layers=12,
|
207 |
+
num_attention_heads=12,
|
208 |
+
intermediate_size=3072,
|
209 |
+
hidden_act="gelu",
|
210 |
+
hidden_dropout_prob=0.1,
|
211 |
+
attention_probs_dropout_prob=0.1,
|
212 |
+
max_position_embeddings=512,
|
213 |
+
type_vocab_size=2,
|
214 |
+
initializer_range=0.02,
|
215 |
+
layer_norm_eps=1e-12,
|
216 |
+
num_hidden_word_layers=6):
|
217 |
+
"""Constructs ZenConfig.
|
218 |
+
|
219 |
+
Args:
|
220 |
+
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `BertModel`.
|
221 |
+
hidden_size: Size of the encoder layers and the pooler layer.
|
222 |
+
num_hidden_layers: Number of hidden layers in the Transformer encoder.
|
223 |
+
num_attention_heads: Number of attention heads for each attention layer in
|
224 |
+
the Transformer encoder.
|
225 |
+
intermediate_size: The size of the "intermediate" (i.e., feed-forward)
|
226 |
+
layer in the Transformer encoder.
|
227 |
+
hidden_act: The non-linear activation function (function or string) in the
|
228 |
+
encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
|
229 |
+
hidden_dropout_prob: The dropout probabilitiy for all fully connected
|
230 |
+
layers in the embeddings, encoder, and pooler.
|
231 |
+
attention_probs_dropout_prob: The dropout ratio for the attention
|
232 |
+
probabilities.
|
233 |
+
max_position_embeddings: The maximum sequence length that this model might
|
234 |
+
ever be used with. Typically set this to something large just in case
|
235 |
+
(e.g., 512 or 1024 or 2048).
|
236 |
+
type_vocab_size: The vocabulary size of the `token_type_ids` passed into
|
237 |
+
`BertModel`.
|
238 |
+
initializer_range: The sttdev of the truncated_normal_initializer for
|
239 |
+
initializing all weight matrices.
|
240 |
+
layer_norm_eps: The epsilon used by LayerNorm.
|
241 |
+
"""
|
242 |
+
if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
|
243 |
+
and isinstance(vocab_size_or_config_json_file, unicode)):
|
244 |
+
with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
|
245 |
+
json_config = json.loads(reader.read())
|
246 |
+
for key, value in json_config.items():
|
247 |
+
self.__dict__[key] = value
|
248 |
+
self.word_size = word_vocab_size
|
249 |
+
elif isinstance(vocab_size_or_config_json_file, int):
|
250 |
+
self.vocab_size = vocab_size_or_config_json_file
|
251 |
+
self.word_size = word_vocab_size
|
252 |
+
self.hidden_size = hidden_size
|
253 |
+
self.num_hidden_layers = num_hidden_layers
|
254 |
+
self.num_attention_heads = num_attention_heads
|
255 |
+
self.hidden_act = hidden_act
|
256 |
+
self.intermediate_size = intermediate_size
|
257 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
258 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
259 |
+
self.max_position_embeddings = max_position_embeddings
|
260 |
+
self.type_vocab_size = type_vocab_size
|
261 |
+
self.initializer_range = initializer_range
|
262 |
+
self.layer_norm_eps = layer_norm_eps
|
263 |
+
self.num_hidden_word_layers = num_hidden_word_layers
|
264 |
+
else:
|
265 |
+
raise ValueError("First argument must be either a vocabulary size (int)"
|
266 |
+
"or the path to a pretrained model config file (str)")
|
267 |
+
|
268 |
+
@classmethod
|
269 |
+
def from_dict(cls, json_object):
|
270 |
+
"""Constructs a `BertConfig` from a Python dictionary of parameters."""
|
271 |
+
config = ZenConfig(vocab_size_or_config_json_file=-1, word_vocab_size=104089)
|
272 |
+
for key, value in json_object.items():
|
273 |
+
config.__dict__[key] = value
|
274 |
+
return config
|
275 |
+
|
276 |
+
@classmethod
|
277 |
+
def from_json_file(cls, json_file):
|
278 |
+
"""Constructs a `BertConfig` from a json file of parameters."""
|
279 |
+
with open(json_file, "r", encoding='utf-8') as reader:
|
280 |
+
text = reader.read()
|
281 |
+
return cls.from_dict(json.loads(text))
|
282 |
+
|
283 |
+
def __repr__(self):
|
284 |
+
return str(self.to_json_string())
|
285 |
+
|
286 |
+
def to_dict(self):
|
287 |
+
"""Serializes this instance to a Python dictionary."""
|
288 |
+
output = copy.deepcopy(self.__dict__)
|
289 |
+
return output
|
290 |
+
|
291 |
+
def to_json_string(self):
|
292 |
+
"""Serializes this instance to a JSON string."""
|
293 |
+
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
|
294 |
+
|
295 |
+
def to_json_file(self, json_file_path):
|
296 |
+
""" Save this instance to a json file."""
|
297 |
+
with open(json_file_path, "w", encoding='utf-8') as writer:
|
298 |
+
writer.write(self.to_json_string())
|
299 |
+
|
300 |
+
|
301 |
+
try:
|
302 |
+
from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
|
303 |
+
except ImportError:
|
304 |
+
logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
|
305 |
+
|
306 |
+
|
307 |
+
class BertLayerNorm(nn.Module):
|
308 |
+
def __init__(self, hidden_size, eps=1e-12):
|
309 |
+
"""Construct a layernorm module in the TF style (epsilon inside the square root).
|
310 |
+
"""
|
311 |
+
super(BertLayerNorm, self).__init__()
|
312 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
313 |
+
self.bias = nn.Parameter(torch.zeros(hidden_size))
|
314 |
+
self.variance_epsilon = eps
|
315 |
+
|
316 |
+
def forward(self, x):
|
317 |
+
u = x.mean(-1, keepdim=True)
|
318 |
+
s = (x - u).pow(2).mean(-1, keepdim=True)
|
319 |
+
x = (x - u) / torch.sqrt(s + self.variance_epsilon)
|
320 |
+
return self.weight * x + self.bias
|
321 |
+
|
322 |
+
|
323 |
+
class BertEmbeddings(nn.Module):
|
324 |
+
"""Construct the embeddings from word, position and token_type embeddings.
|
325 |
+
"""
|
326 |
+
|
327 |
+
def __init__(self, config):
|
328 |
+
super(BertEmbeddings, self).__init__()
|
329 |
+
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
|
330 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
|
331 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
332 |
+
|
333 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
334 |
+
# any TensorFlow checkpoint file
|
335 |
+
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
336 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
337 |
+
|
338 |
+
def forward(self, input_ids, token_type_ids=None):
|
339 |
+
seq_length = input_ids.size(1)
|
340 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
|
341 |
+
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
|
342 |
+
if token_type_ids is None:
|
343 |
+
token_type_ids = torch.zeros_like(input_ids)
|
344 |
+
|
345 |
+
words_embeddings = self.word_embeddings(input_ids)
|
346 |
+
position_embeddings = self.position_embeddings(position_ids)
|
347 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
348 |
+
|
349 |
+
embeddings = words_embeddings + position_embeddings + token_type_embeddings
|
350 |
+
embeddings = self.LayerNorm(embeddings)
|
351 |
+
embeddings = self.dropout(embeddings)
|
352 |
+
return embeddings
|
353 |
+
|
354 |
+
|
355 |
+
class BertWordEmbeddings(nn.Module):
|
356 |
+
"""Construct the embeddings from ngram, position and token_type embeddings.
|
357 |
+
"""
|
358 |
+
|
359 |
+
def __init__(self, config):
|
360 |
+
super(BertWordEmbeddings, self).__init__()
|
361 |
+
self.word_embeddings = nn.Embedding(config.word_size, config.hidden_size, padding_idx=0)
|
362 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
363 |
+
|
364 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
365 |
+
# any TensorFlow checkpoint file
|
366 |
+
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
367 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
368 |
+
|
369 |
+
def forward(self, input_ids, token_type_ids=None):
|
370 |
+
if token_type_ids is None:
|
371 |
+
token_type_ids = torch.zeros_like(input_ids)
|
372 |
+
|
373 |
+
words_embeddings = self.word_embeddings(input_ids)
|
374 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
375 |
+
|
376 |
+
embeddings = words_embeddings + token_type_embeddings
|
377 |
+
embeddings = self.LayerNorm(embeddings)
|
378 |
+
embeddings = self.dropout(embeddings)
|
379 |
+
return embeddings
|
380 |
+
|
381 |
+
|
382 |
+
class BertSelfAttention(nn.Module):
|
383 |
+
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
|
384 |
+
super(BertSelfAttention, self).__init__()
|
385 |
+
if config.hidden_size % config.num_attention_heads != 0:
|
386 |
+
raise ValueError(
|
387 |
+
"The hidden size (%d) is not a multiple of the number of attention "
|
388 |
+
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
|
389 |
+
self.output_attentions = output_attentions
|
390 |
+
self.keep_multihead_output = keep_multihead_output
|
391 |
+
self.multihead_output = None
|
392 |
+
|
393 |
+
self.num_attention_heads = config.num_attention_heads
|
394 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
395 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
396 |
+
|
397 |
+
self.query = nn.Linear(config.hidden_size, self.all_head_size)
|
398 |
+
self.key = nn.Linear(config.hidden_size, self.all_head_size)
|
399 |
+
self.value = nn.Linear(config.hidden_size, self.all_head_size)
|
400 |
+
|
401 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
402 |
+
|
403 |
+
def transpose_for_scores(self, x):
|
404 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
405 |
+
x = x.view(*new_x_shape)
|
406 |
+
return x.permute(0, 2, 1, 3)
|
407 |
+
|
408 |
+
def forward(self, hidden_states, attention_mask, head_mask=None):
|
409 |
+
mixed_query_layer = self.query(hidden_states)
|
410 |
+
mixed_key_layer = self.key(hidden_states)
|
411 |
+
mixed_value_layer = self.value(hidden_states)
|
412 |
+
|
413 |
+
query_layer = self.transpose_for_scores(mixed_query_layer)
|
414 |
+
key_layer = self.transpose_for_scores(mixed_key_layer)
|
415 |
+
value_layer = self.transpose_for_scores(mixed_value_layer)
|
416 |
+
|
417 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
418 |
+
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
|
419 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
420 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
421 |
+
attention_scores = attention_scores + attention_mask
|
422 |
+
|
423 |
+
# Normalize the attention scores to probabilities.
|
424 |
+
attention_probs = nn.Softmax(dim=-1)(attention_scores)
|
425 |
+
|
426 |
+
# This is actually dropping out entire tokens to attend to, which might
|
427 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
428 |
+
attention_probs = self.dropout(attention_probs)
|
429 |
+
|
430 |
+
# Mask heads if we want to
|
431 |
+
if head_mask is not None:
|
432 |
+
attention_probs = attention_probs * head_mask
|
433 |
+
|
434 |
+
context_layer = torch.matmul(attention_probs, value_layer)
|
435 |
+
if self.keep_multihead_output:
|
436 |
+
self.multihead_output = context_layer
|
437 |
+
self.multihead_output.retain_grad()
|
438 |
+
|
439 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
440 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
441 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
442 |
+
if self.output_attentions:
|
443 |
+
return attention_probs, context_layer
|
444 |
+
return context_layer
|
445 |
+
|
446 |
+
|
447 |
+
class BertSelfOutput(nn.Module):
|
448 |
+
def __init__(self, config):
|
449 |
+
super(BertSelfOutput, self).__init__()
|
450 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
451 |
+
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
452 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
453 |
+
|
454 |
+
def forward(self, hidden_states, input_tensor):
|
455 |
+
hidden_states = self.dense(hidden_states)
|
456 |
+
hidden_states = self.dropout(hidden_states)
|
457 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
458 |
+
return hidden_states
|
459 |
+
|
460 |
+
|
461 |
+
class BertAttention(nn.Module):
|
462 |
+
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
|
463 |
+
super(BertAttention, self).__init__()
|
464 |
+
self.output_attentions = output_attentions
|
465 |
+
self.self = BertSelfAttention(config, output_attentions=output_attentions,
|
466 |
+
keep_multihead_output=keep_multihead_output)
|
467 |
+
self.output = BertSelfOutput(config)
|
468 |
+
|
469 |
+
def prune_heads(self, heads):
|
470 |
+
if len(heads) == 0:
|
471 |
+
return
|
472 |
+
mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
|
473 |
+
for head in heads:
|
474 |
+
mask[head] = 0
|
475 |
+
mask = mask.view(-1).contiguous().eq(1)
|
476 |
+
index = torch.arange(len(mask))[mask].long()
|
477 |
+
# Prune linear layers
|
478 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
479 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
480 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
481 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
482 |
+
# Update hyper params
|
483 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
484 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
485 |
+
|
486 |
+
def forward(self, input_tensor, attention_mask, head_mask=None):
|
487 |
+
self_output = self.self(input_tensor, attention_mask, head_mask)
|
488 |
+
if self.output_attentions:
|
489 |
+
attentions, self_output = self_output
|
490 |
+
attention_output = self.output(self_output, input_tensor)
|
491 |
+
if self.output_attentions:
|
492 |
+
return attentions, attention_output
|
493 |
+
return attention_output
|
494 |
+
|
495 |
+
|
496 |
+
class BertIntermediate(nn.Module):
|
497 |
+
def __init__(self, config):
|
498 |
+
super(BertIntermediate, self).__init__()
|
499 |
+
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
|
500 |
+
if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
|
501 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
502 |
+
else:
|
503 |
+
self.intermediate_act_fn = config.hidden_act
|
504 |
+
|
505 |
+
def forward(self, hidden_states):
|
506 |
+
hidden_states = self.dense(hidden_states)
|
507 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
508 |
+
return hidden_states
|
509 |
+
|
510 |
+
|
511 |
+
class BertOutput(nn.Module):
|
512 |
+
def __init__(self, config):
|
513 |
+
super(BertOutput, self).__init__()
|
514 |
+
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
|
515 |
+
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
516 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
517 |
+
|
518 |
+
def forward(self, hidden_states, input_tensor):
|
519 |
+
hidden_states = self.dense(hidden_states)
|
520 |
+
hidden_states = self.dropout(hidden_states)
|
521 |
+
hidden_states = self.LayerNorm(hidden_states + input_tensor)
|
522 |
+
return hidden_states
|
523 |
+
|
524 |
+
|
525 |
+
class BertLayer(nn.Module):
|
526 |
+
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
|
527 |
+
super(BertLayer, self).__init__()
|
528 |
+
self.output_attentions = output_attentions
|
529 |
+
self.attention = BertAttention(config, output_attentions=output_attentions,
|
530 |
+
keep_multihead_output=keep_multihead_output)
|
531 |
+
self.intermediate = BertIntermediate(config)
|
532 |
+
self.output = BertOutput(config)
|
533 |
+
|
534 |
+
def forward(self, hidden_states, attention_mask, head_mask=None):
|
535 |
+
attention_output = self.attention(hidden_states, attention_mask, head_mask)
|
536 |
+
if self.output_attentions:
|
537 |
+
attentions, attention_output = attention_output
|
538 |
+
intermediate_output = self.intermediate(attention_output)
|
539 |
+
layer_output = self.output(intermediate_output, attention_output)
|
540 |
+
if self.output_attentions:
|
541 |
+
return attentions, layer_output
|
542 |
+
return layer_output
|
543 |
+
|
544 |
+
|
545 |
+
class ZenEncoder(nn.Module):
|
546 |
+
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
|
547 |
+
super(ZenEncoder, self).__init__()
|
548 |
+
self.output_attentions = output_attentions
|
549 |
+
layer = BertLayer(config, output_attentions=output_attentions,
|
550 |
+
keep_multihead_output=keep_multihead_output)
|
551 |
+
self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)])
|
552 |
+
self.word_layers = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_word_layers)])
|
553 |
+
self.num_hidden_word_layers = config.num_hidden_word_layers
|
554 |
+
|
555 |
+
def forward(self, hidden_states, ngram_hidden_states, ngram_position_matrix, attention_mask,
|
556 |
+
ngram_attention_mask,
|
557 |
+
output_all_encoded_layers=True, head_mask=None):
|
558 |
+
# Need to check what is the attention masking doing here
|
559 |
+
all_encoder_layers = []
|
560 |
+
all_attentions = []
|
561 |
+
num_hidden_ngram_layers = self.num_hidden_word_layers
|
562 |
+
for i, layer_module in enumerate(self.layer):
|
563 |
+
hidden_states = layer_module(hidden_states, attention_mask, head_mask[i])
|
564 |
+
if i < num_hidden_ngram_layers:
|
565 |
+
ngram_hidden_states = self.word_layers[i](ngram_hidden_states, ngram_attention_mask, head_mask[i])
|
566 |
+
if self.output_attentions:
|
567 |
+
ngram_attentions, ngram_hidden_states = ngram_hidden_states
|
568 |
+
if self.output_attentions:
|
569 |
+
attentions, hidden_states = hidden_states
|
570 |
+
all_attentions.append(attentions)
|
571 |
+
hidden_states += torch.bmm(ngram_position_matrix.float(), ngram_hidden_states.float())
|
572 |
+
if output_all_encoded_layers:
|
573 |
+
all_encoder_layers.append(hidden_states)
|
574 |
+
if not output_all_encoded_layers:
|
575 |
+
all_encoder_layers.append(hidden_states)
|
576 |
+
if self.output_attentions:
|
577 |
+
return all_attentions, all_encoder_layers
|
578 |
+
return all_encoder_layers
|
579 |
+
|
580 |
+
|
581 |
+
class BertPooler(nn.Module):
|
582 |
+
def __init__(self, config):
|
583 |
+
super(BertPooler, self).__init__()
|
584 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
585 |
+
self.activation = nn.Tanh()
|
586 |
+
|
587 |
+
def forward(self, hidden_states):
|
588 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
589 |
+
# to the first token.
|
590 |
+
first_token_tensor = hidden_states[:, 0]
|
591 |
+
pooled_output = self.dense(first_token_tensor)
|
592 |
+
pooled_output = self.activation(pooled_output)
|
593 |
+
return pooled_output
|
594 |
+
|
595 |
+
|
596 |
+
class BertPredictionHeadTransform(nn.Module):
|
597 |
+
def __init__(self, config):
|
598 |
+
super(BertPredictionHeadTransform, self).__init__()
|
599 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
600 |
+
if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
|
601 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
602 |
+
else:
|
603 |
+
self.transform_act_fn = config.hidden_act
|
604 |
+
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
605 |
+
|
606 |
+
def forward(self, hidden_states):
|
607 |
+
hidden_states = self.dense(hidden_states)
|
608 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
609 |
+
hidden_states = self.LayerNorm(hidden_states)
|
610 |
+
return hidden_states
|
611 |
+
|
612 |
+
|
613 |
+
class BertLMPredictionHead(nn.Module):
|
614 |
+
def __init__(self, config, bert_model_embedding_weights):
|
615 |
+
super(BertLMPredictionHead, self).__init__()
|
616 |
+
self.transform = BertPredictionHeadTransform(config)
|
617 |
+
|
618 |
+
# The output weights are the same as the input embeddings, but there is
|
619 |
+
# an output-only bias for each token.
|
620 |
+
self.decoder = nn.Linear(bert_model_embedding_weights.size(1),
|
621 |
+
bert_model_embedding_weights.size(0),
|
622 |
+
bias=False)
|
623 |
+
self.decoder.weight = bert_model_embedding_weights
|
624 |
+
self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0)))
|
625 |
+
|
626 |
+
def forward(self, hidden_states):
|
627 |
+
hidden_states = self.transform(hidden_states)
|
628 |
+
hidden_states = self.decoder(hidden_states) + self.bias
|
629 |
+
return hidden_states
|
630 |
+
|
631 |
+
|
632 |
+
class ZenOnlyMLMHead(nn.Module):
|
633 |
+
def __init__(self, config, bert_model_embedding_weights):
|
634 |
+
super(ZenOnlyMLMHead, self).__init__()
|
635 |
+
self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
|
636 |
+
|
637 |
+
def forward(self, sequence_output):
|
638 |
+
prediction_scores = self.predictions(sequence_output)
|
639 |
+
return prediction_scores
|
640 |
+
|
641 |
+
|
642 |
+
class ZenOnlyNSPHead(nn.Module):
|
643 |
+
def __init__(self, config):
|
644 |
+
super(ZenOnlyNSPHead, self).__init__()
|
645 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
646 |
+
|
647 |
+
def forward(self, pooled_output):
|
648 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
649 |
+
return seq_relationship_score
|
650 |
+
|
651 |
+
|
652 |
+
class ZenPreTrainingHeads(nn.Module):
|
653 |
+
def __init__(self, config, bert_model_embedding_weights):
|
654 |
+
super(ZenPreTrainingHeads, self).__init__()
|
655 |
+
self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights)
|
656 |
+
self.seq_relationship = nn.Linear(config.hidden_size, 2)
|
657 |
+
|
658 |
+
def forward(self, sequence_output, pooled_output):
|
659 |
+
prediction_scores = self.predictions(sequence_output)
|
660 |
+
seq_relationship_score = self.seq_relationship(pooled_output)
|
661 |
+
return prediction_scores, seq_relationship_score
|
662 |
+
|
663 |
+
|
664 |
+
class ZenPreTrainedModel(nn.Module):
|
665 |
+
""" An abstract class to handle weights initialization and
|
666 |
+
a simple interface for dowloading and loading pretrained models.
|
667 |
+
"""
|
668 |
+
|
669 |
+
def __init__(self, config, *inputs, **kwargs):
|
670 |
+
super(ZenPreTrainedModel, self).__init__()
|
671 |
+
if not isinstance(config, ZenConfig):
|
672 |
+
raise ValueError(
|
673 |
+
"Parameter config in `{}(config)` should be an instance of class `BertConfig`. "
|
674 |
+
"To create a model from a Google pretrained model use "
|
675 |
+
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
|
676 |
+
self.__class__.__name__, self.__class__.__name__
|
677 |
+
))
|
678 |
+
self.config = config
|
679 |
+
|
680 |
+
def init_bert_weights(self, module):
|
681 |
+
""" Initialize the weights.
|
682 |
+
"""
|
683 |
+
if isinstance(module, (nn.Linear, nn.Embedding)):
|
684 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
685 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
686 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
687 |
+
elif isinstance(module, BertLayerNorm):
|
688 |
+
module.bias.data.zero_()
|
689 |
+
module.weight.data.fill_(1.0)
|
690 |
+
if isinstance(module, nn.Linear) and module.bias is not None:
|
691 |
+
module.bias.data.zero_()
|
692 |
+
|
693 |
+
@classmethod
|
694 |
+
def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs):
|
695 |
+
"""
|
696 |
+
Instantiate a BertPreTrainedModel from a pre-trained model file or a pytorch state dict.
|
697 |
+
Download and cache the pre-trained model file if needed.
|
698 |
+
|
699 |
+
Params:
|
700 |
+
pretrained_model_name_or_path: either:
|
701 |
+
- a str with the name of a pre-trained model to load selected in the list of:
|
702 |
+
. `bert-base-uncased`
|
703 |
+
. `bert-large-uncased`
|
704 |
+
. `bert-base-cased`
|
705 |
+
. `bert-large-cased`
|
706 |
+
. `bert-base-multilingual-uncased`
|
707 |
+
. `bert-base-multilingual-cased`
|
708 |
+
. `bert-base-chinese`
|
709 |
+
. `bert-base-german-cased`
|
710 |
+
. `bert-large-uncased-whole-word-masking`
|
711 |
+
. `bert-large-cased-whole-word-masking`
|
712 |
+
- a path or url to a pretrained model archive containing:
|
713 |
+
. `bert_config.json` a configuration file for the model
|
714 |
+
. `pytorch_model.bin` a PyTorch dump of a BertForPreTraining instance
|
715 |
+
- a path or url to a pretrained model archive containing:
|
716 |
+
. `bert_config.json` a configuration file for the model
|
717 |
+
. `model.chkpt` a TensorFlow checkpoint
|
718 |
+
from_tf: should we load the weights from a locally saved TensorFlow checkpoint
|
719 |
+
cache_dir: an optional path to a folder in which the pre-trained models will be cached.
|
720 |
+
state_dict: an optional state dictionnary (collections.OrderedDict object) to use instead of Google pre-trained models
|
721 |
+
*inputs, **kwargs: additional input for the specific Bert class
|
722 |
+
(ex: num_labels for BertForSequenceClassification)
|
723 |
+
"""
|
724 |
+
state_dict = kwargs.get('state_dict', None)
|
725 |
+
kwargs.pop('state_dict', None)
|
726 |
+
cache_dir = kwargs.get('cache_dir', None)
|
727 |
+
kwargs.pop('cache_dir', None)
|
728 |
+
from_tf = kwargs.get('from_tf', False)
|
729 |
+
kwargs.pop('from_tf', None)
|
730 |
+
multift = kwargs.get("multift", False)
|
731 |
+
kwargs.pop('multift', None)
|
732 |
+
|
733 |
+
if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
|
734 |
+
archive_file = PRETRAINED_MODEL_ARCHIVE_MAP[pretrained_model_name_or_path]
|
735 |
+
config_file = PRETRAINED_CONFIG_ARCHIVE_MAP[pretrained_model_name_or_path]
|
736 |
+
else:
|
737 |
+
if from_tf:
|
738 |
+
# Directly load from a TensorFlow checkpoint
|
739 |
+
archive_file = os.path.join(pretrained_model_name_or_path, TF_WEIGHTS_NAME)
|
740 |
+
config_file = os.path.join(pretrained_model_name_or_path, BERT_CONFIG_NAME)
|
741 |
+
else:
|
742 |
+
archive_file = os.path.join(pretrained_model_name_or_path, WEIGHTS_NAME)
|
743 |
+
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
|
744 |
+
# redirect to the cache, if necessary
|
745 |
+
try:
|
746 |
+
resolved_archive_file = cached_path(archive_file, cache_dir=cache_dir)
|
747 |
+
except EnvironmentError:
|
748 |
+
if pretrained_model_name_or_path in PRETRAINED_MODEL_ARCHIVE_MAP:
|
749 |
+
logger.error(
|
750 |
+
"Couldn't reach server at '{}' to download pretrained weights.".format(
|
751 |
+
archive_file))
|
752 |
+
else:
|
753 |
+
logger.error(
|
754 |
+
"Model name '{}' was not found in model name list ({}). "
|
755 |
+
"We assumed '{}' was a path or url but couldn't find any file "
|
756 |
+
"associated to this path or url.".format(
|
757 |
+
pretrained_model_name_or_path,
|
758 |
+
', '.join(PRETRAINED_MODEL_ARCHIVE_MAP.keys()),
|
759 |
+
archive_file))
|
760 |
+
return None
|
761 |
+
try:
|
762 |
+
resolved_config_file = cached_path(config_file, cache_dir=cache_dir)
|
763 |
+
except EnvironmentError:
|
764 |
+
if pretrained_model_name_or_path in PRETRAINED_CONFIG_ARCHIVE_MAP:
|
765 |
+
logger.error(
|
766 |
+
"Couldn't reach server at '{}' to download pretrained model configuration file.".format(
|
767 |
+
config_file))
|
768 |
+
else:
|
769 |
+
logger.error(
|
770 |
+
"Model name '{}' was not found in model name list ({}). "
|
771 |
+
"We assumed '{}' was a path or url but couldn't find any file "
|
772 |
+
"associated to this path or url.".format(
|
773 |
+
pretrained_model_name_or_path,
|
774 |
+
', '.join(PRETRAINED_CONFIG_ARCHIVE_MAP.keys()),
|
775 |
+
config_file))
|
776 |
+
return None
|
777 |
+
if resolved_archive_file == archive_file and resolved_config_file == config_file:
|
778 |
+
logger.info("loading weights file {}".format(archive_file))
|
779 |
+
logger.info("loading configuration file {}".format(config_file))
|
780 |
+
else:
|
781 |
+
logger.info("loading weights file {} from cache at {}".format(
|
782 |
+
archive_file, resolved_archive_file))
|
783 |
+
logger.info("loading configuration file {} from cache at {}".format(
|
784 |
+
config_file, resolved_config_file))
|
785 |
+
# Load config
|
786 |
+
config = ZenConfig.from_json_file(resolved_config_file)
|
787 |
+
logger.info("Model config {}".format(config))
|
788 |
+
# Instantiate model.
|
789 |
+
model = cls(config, *inputs, **kwargs)
|
790 |
+
if state_dict is None and not from_tf:
|
791 |
+
state_dict = torch.load(resolved_archive_file, map_location='cpu')
|
792 |
+
# Load from a PyTorch state_dict
|
793 |
+
old_keys = []
|
794 |
+
new_keys = []
|
795 |
+
for key in state_dict.keys():
|
796 |
+
new_key = None
|
797 |
+
if 'gamma' in key:
|
798 |
+
new_key = key.replace('gamma', 'weight')
|
799 |
+
if 'beta' in key:
|
800 |
+
new_key = key.replace('beta', 'bias')
|
801 |
+
if new_key:
|
802 |
+
old_keys.append(key)
|
803 |
+
new_keys.append(new_key)
|
804 |
+
if multift:
|
805 |
+
state_dict.pop("classifier.weight")
|
806 |
+
state_dict.pop("classifier.bias")
|
807 |
+
for old_key, new_key in zip(old_keys, new_keys):
|
808 |
+
state_dict[new_key] = state_dict.pop(old_key)
|
809 |
+
|
810 |
+
missing_keys = []
|
811 |
+
unexpected_keys = []
|
812 |
+
error_msgs = []
|
813 |
+
# copy state_dict so _load_from_state_dict can modify it
|
814 |
+
metadata = getattr(state_dict, '_metadata', None)
|
815 |
+
state_dict = state_dict.copy()
|
816 |
+
if metadata is not None:
|
817 |
+
state_dict._metadata = metadata
|
818 |
+
|
819 |
+
def load(module, prefix=''):
|
820 |
+
local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
|
821 |
+
module._load_from_state_dict(
|
822 |
+
state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
|
823 |
+
for name, child in module._modules.items():
|
824 |
+
if child is not None:
|
825 |
+
load(child, prefix + name + '.')
|
826 |
+
|
827 |
+
start_prefix = ''
|
828 |
+
if not hasattr(model, 'bert') and any(s.startswith('bert.') for s in state_dict.keys()):
|
829 |
+
start_prefix = 'bert.'
|
830 |
+
load(model, prefix=start_prefix)
|
831 |
+
if len(missing_keys) > 0:
|
832 |
+
logger.info("Weights of {} not initialized from pretrained model: {}".format(
|
833 |
+
model.__class__.__name__, missing_keys))
|
834 |
+
if len(unexpected_keys) > 0:
|
835 |
+
logger.info("Weights from pretrained model not used in {}: {}".format(
|
836 |
+
model.__class__.__name__, unexpected_keys))
|
837 |
+
if len(error_msgs) > 0:
|
838 |
+
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
|
839 |
+
model.__class__.__name__, "\n\t".join(error_msgs)))
|
840 |
+
return model
|
841 |
+
|
842 |
+
|
843 |
+
class ZenModel(ZenPreTrainedModel):
|
844 |
+
"""ZEN model ("BERT-based Chinese (Z) text encoder Enhanced by N-gram representations").
|
845 |
+
|
846 |
+
Params:
|
847 |
+
`config`: a BertConfig class instance with the configuration to build a new model
|
848 |
+
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
|
849 |
+
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
|
850 |
+
This can be used to compute head importance metrics. Default: False
|
851 |
+
|
852 |
+
Inputs:
|
853 |
+
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
|
854 |
+
with the word token indices in the vocabulary
|
855 |
+
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
|
856 |
+
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
|
857 |
+
a `sentence B` token (see BERT paper for more details).
|
858 |
+
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
|
859 |
+
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
|
860 |
+
input sequence length in the current batch. It's the mask that we typically use for attention when
|
861 |
+
a batch has varying length sentences.
|
862 |
+
`output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`.
|
863 |
+
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
|
864 |
+
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
|
865 |
+
`input_ngram_ids`: input_ids of ngrams.
|
866 |
+
`ngram_token_type_ids`: token_type_ids of ngrams.
|
867 |
+
`ngram_attention_mask`: attention_mask of ngrams.
|
868 |
+
`ngram_position_matrix`: position matrix of ngrams.
|
869 |
+
|
870 |
+
|
871 |
+
Outputs: Tuple of (encoded_layers, pooled_output)
|
872 |
+
`encoded_layers`: controled by `output_all_encoded_layers` argument:
|
873 |
+
- `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
|
874 |
+
of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each
|
875 |
+
encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size],
|
876 |
+
- `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
|
877 |
+
to the last attention block of shape [batch_size, sequence_length, hidden_size],
|
878 |
+
`pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a
|
879 |
+
classifier pretrained on top of the hidden state associated to the first character of the
|
880 |
+
input (`CLS`) to train on the Next-Sentence task (see BERT's paper).
|
881 |
+
|
882 |
+
"""
|
883 |
+
|
884 |
+
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
|
885 |
+
super(ZenModel, self).__init__(config)
|
886 |
+
self.output_attentions = output_attentions
|
887 |
+
self.embeddings = BertEmbeddings(config)
|
888 |
+
self.word_embeddings = BertWordEmbeddings(config)
|
889 |
+
self.encoder = ZenEncoder(config, output_attentions=output_attentions,
|
890 |
+
keep_multihead_output=keep_multihead_output)
|
891 |
+
self.pooler = BertPooler(config)
|
892 |
+
self.apply(self.init_bert_weights)
|
893 |
+
|
894 |
+
def prune_heads(self, heads_to_prune):
|
895 |
+
""" Prunes heads of the model.
|
896 |
+
heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
897 |
+
"""
|
898 |
+
for layer, heads in heads_to_prune.items():
|
899 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
900 |
+
|
901 |
+
def get_multihead_outputs(self):
|
902 |
+
""" Gather all multi-head outputs.
|
903 |
+
Return: list (layers) of multihead module outputs with gradients
|
904 |
+
"""
|
905 |
+
return [layer.attention.self.multihead_output for layer in self.encoder.layer]
|
906 |
+
|
907 |
+
def forward(self, input_ids,
|
908 |
+
input_ngram_ids,
|
909 |
+
ngram_position_matrix,
|
910 |
+
token_type_ids=None,
|
911 |
+
ngram_token_type_ids=None,
|
912 |
+
attention_mask=None,
|
913 |
+
ngram_attention_mask=None,
|
914 |
+
output_all_encoded_layers=True,
|
915 |
+
head_mask=None):
|
916 |
+
if attention_mask is None:
|
917 |
+
attention_mask = torch.ones_like(input_ids)
|
918 |
+
if token_type_ids is None:
|
919 |
+
token_type_ids = torch.zeros_like(input_ids)
|
920 |
+
|
921 |
+
if ngram_attention_mask is None:
|
922 |
+
ngram_attention_mask = torch.ones_like(input_ngram_ids)
|
923 |
+
if ngram_token_type_ids is None:
|
924 |
+
ngram_token_type_ids = torch.zeros_like(input_ngram_ids)
|
925 |
+
|
926 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
927 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
928 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
929 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
930 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
931 |
+
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
932 |
+
extended_ngram_attention_mask = ngram_attention_mask.unsqueeze(1).unsqueeze(2)
|
933 |
+
|
934 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
935 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
936 |
+
# positions we want to attend and -10000.0 for masked positions.
|
937 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
938 |
+
# effectively the same as removing these entirely.
|
939 |
+
extended_attention_mask = extended_attention_mask.to(dtype=torch.float32) # fp16 compatibility
|
940 |
+
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
|
941 |
+
|
942 |
+
extended_ngram_attention_mask = extended_ngram_attention_mask.to(dtype=torch.float32)
|
943 |
+
extended_ngram_attention_mask = (1.0 - extended_ngram_attention_mask) * -10000.0
|
944 |
+
|
945 |
+
# Prepare head mask if needed
|
946 |
+
# 1.0 in head_mask indicate we keep the head
|
947 |
+
# attention_probs has shape bsz x n_heads x N x N
|
948 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
949 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
950 |
+
if head_mask is not None:
|
951 |
+
if head_mask.dim() == 1:
|
952 |
+
head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
|
953 |
+
head_mask = head_mask.expand_as(self.config.num_hidden_layers, -1, -1, -1, -1)
|
954 |
+
elif head_mask.dim() == 2:
|
955 |
+
head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(
|
956 |
+
-1) # We can specify head_mask for each layer
|
957 |
+
head_mask = head_mask.to(
|
958 |
+
dtype=torch.float32) # switch to fload if need + fp16 compatibility
|
959 |
+
else:
|
960 |
+
head_mask = [None] * self.config.num_hidden_layers
|
961 |
+
|
962 |
+
embedding_output = self.embeddings(input_ids, token_type_ids)
|
963 |
+
ngram_embedding_output = self.word_embeddings(input_ngram_ids, ngram_token_type_ids)
|
964 |
+
|
965 |
+
encoded_layers = self.encoder(embedding_output,
|
966 |
+
ngram_embedding_output,
|
967 |
+
ngram_position_matrix,
|
968 |
+
extended_attention_mask,
|
969 |
+
extended_ngram_attention_mask,
|
970 |
+
output_all_encoded_layers=output_all_encoded_layers,
|
971 |
+
head_mask=head_mask)
|
972 |
+
if self.output_attentions:
|
973 |
+
all_attentions, encoded_layers = encoded_layers
|
974 |
+
sequence_output = encoded_layers[-1]
|
975 |
+
pooled_output = self.pooler(sequence_output)
|
976 |
+
if not output_all_encoded_layers:
|
977 |
+
encoded_layers = encoded_layers[-1]
|
978 |
+
if self.output_attentions:
|
979 |
+
return all_attentions, encoded_layers, pooled_output
|
980 |
+
return encoded_layers, pooled_output
|
981 |
+
|
982 |
+
|
983 |
+
class ZenForPreTraining(ZenPreTrainedModel):
|
984 |
+
"""ZEN model with pre-training heads.
|
985 |
+
This module comprises the ZEN model followed by the two pre-training heads:
|
986 |
+
- the masked language modeling head, and
|
987 |
+
- the next sentence classification head.
|
988 |
+
|
989 |
+
Params:
|
990 |
+
`config`: a BertConfig class instance with the configuration to build a new model
|
991 |
+
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
|
992 |
+
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
|
993 |
+
This can be used to compute head importance metrics. Default: False
|
994 |
+
|
995 |
+
Inputs:
|
996 |
+
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
|
997 |
+
with the word token indices in the vocabulary
|
998 |
+
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
|
999 |
+
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
|
1000 |
+
a `sentence B` token (see BERT paper for more details).
|
1001 |
+
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
|
1002 |
+
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
|
1003 |
+
input sequence length in the current batch. It's the mask that we typically use for attention when
|
1004 |
+
a batch has varying length sentences.
|
1005 |
+
`masked_lm_labels`: optional masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
|
1006 |
+
with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
|
1007 |
+
is only computed for the labels set in [0, ..., vocab_size]
|
1008 |
+
`next_sentence_label`: optional next sentence classification loss: torch.LongTensor of shape [batch_size]
|
1009 |
+
with indices selected in [0, 1].
|
1010 |
+
0 => next sentence is the continuation, 1 => next sentence is a random sentence.
|
1011 |
+
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
|
1012 |
+
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
|
1013 |
+
`input_ngram_ids`: input_ids of ngrams.
|
1014 |
+
`ngram_token_type_ids`: token_type_ids of ngrams.
|
1015 |
+
`ngram_attention_mask`: attention_mask of ngrams.
|
1016 |
+
`ngram_position_matrix`: position matrix of ngrams.
|
1017 |
+
|
1018 |
+
Outputs:
|
1019 |
+
if `masked_lm_labels` and `next_sentence_label` are not `None`:
|
1020 |
+
Outputs the total_loss which is the sum of the masked language modeling loss and the next
|
1021 |
+
sentence classification loss.
|
1022 |
+
if `masked_lm_labels` or `next_sentence_label` is `None`:
|
1023 |
+
Outputs a tuple comprising
|
1024 |
+
- the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
|
1025 |
+
- the next sentence classification logits of shape [batch_size, 2].
|
1026 |
+
|
1027 |
+
"""
|
1028 |
+
|
1029 |
+
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
|
1030 |
+
super(ZenForPreTraining, self).__init__(config)
|
1031 |
+
self.output_attentions = output_attentions
|
1032 |
+
self.bert = ZenModel(config, output_attentions=output_attentions,
|
1033 |
+
keep_multihead_output=keep_multihead_output)
|
1034 |
+
self.cls = ZenPreTrainingHeads(config, self.bert.embeddings.word_embeddings.weight)
|
1035 |
+
self.apply(self.init_bert_weights)
|
1036 |
+
|
1037 |
+
def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None,
|
1038 |
+
ngram_token_type_ids=None,
|
1039 |
+
attention_mask=None,
|
1040 |
+
ngram_attention_mask=None,
|
1041 |
+
masked_lm_labels=None,
|
1042 |
+
next_sentence_label=None, head_mask=None):
|
1043 |
+
outputs = self.bert(input_ids,
|
1044 |
+
input_ngram_ids,
|
1045 |
+
ngram_position_matrix,
|
1046 |
+
token_type_ids,
|
1047 |
+
ngram_token_type_ids,
|
1048 |
+
attention_mask,
|
1049 |
+
ngram_attention_mask,
|
1050 |
+
output_all_encoded_layers=False, head_mask=head_mask)
|
1051 |
+
if self.output_attentions:
|
1052 |
+
all_attentions, sequence_output, pooled_output = outputs
|
1053 |
+
else:
|
1054 |
+
sequence_output, pooled_output = outputs
|
1055 |
+
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
|
1056 |
+
|
1057 |
+
if masked_lm_labels is not None and next_sentence_label is not None:
|
1058 |
+
loss_fct = CrossEntropyLoss(ignore_index=-1)
|
1059 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
|
1060 |
+
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
|
1061 |
+
total_loss = masked_lm_loss + next_sentence_loss
|
1062 |
+
return total_loss
|
1063 |
+
elif self.output_attentions:
|
1064 |
+
return all_attentions, prediction_scores, seq_relationship_score
|
1065 |
+
return prediction_scores, seq_relationship_score
|
1066 |
+
|
1067 |
+
|
1068 |
+
class ZenForMaskedLM(ZenPreTrainedModel):
|
1069 |
+
"""ZEN model with the masked language modeling head.
|
1070 |
+
This module comprises the ZEN model followed by the masked language modeling head.
|
1071 |
+
|
1072 |
+
Params:
|
1073 |
+
`config`: a BertConfig class instance with the configuration to build a new model
|
1074 |
+
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
|
1075 |
+
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
|
1076 |
+
This can be used to compute head importance metrics. Default: False
|
1077 |
+
|
1078 |
+
Inputs:
|
1079 |
+
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
|
1080 |
+
with the word token indices in the vocabulary
|
1081 |
+
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
|
1082 |
+
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
|
1083 |
+
a `sentence B` token (see BERT paper for more details).
|
1084 |
+
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
|
1085 |
+
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
|
1086 |
+
input sequence length in the current batch. It's the mask that we typically use for attention when
|
1087 |
+
a batch has varying length sentences.
|
1088 |
+
`masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length]
|
1089 |
+
with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss
|
1090 |
+
is only computed for the labels set in [0, ..., vocab_size]
|
1091 |
+
`head_mask`: an optional torch.LongTensor of shape [num_heads] with indices
|
1092 |
+
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
|
1093 |
+
input sequence length in the current batch. It's the mask that we typically use for attention when
|
1094 |
+
a batch has varying length sentences.
|
1095 |
+
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
|
1096 |
+
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
|
1097 |
+
`input_ngram_ids`: input_ids of ngrams.
|
1098 |
+
`ngram_token_type_ids`: token_type_ids of ngrams.
|
1099 |
+
`ngram_attention_mask`: attention_mask of ngrams.
|
1100 |
+
`ngram_position_matrix`: position matrix of ngrams.
|
1101 |
+
|
1102 |
+
Outputs:
|
1103 |
+
if `masked_lm_labels` is not `None`:
|
1104 |
+
Outputs the masked language modeling loss.
|
1105 |
+
if `masked_lm_labels` is `None`:
|
1106 |
+
Outputs the masked language modeling logits of shape [batch_size, sequence_length, vocab_size].
|
1107 |
+
|
1108 |
+
"""
|
1109 |
+
|
1110 |
+
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
|
1111 |
+
super(ZenForMaskedLM, self).__init__(config)
|
1112 |
+
self.output_attentions = output_attentions
|
1113 |
+
self.bert = ZenModel(config, output_attentions=output_attentions,
|
1114 |
+
keep_multihead_output=keep_multihead_output)
|
1115 |
+
self.cls = ZenOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight)
|
1116 |
+
self.apply(self.init_bert_weights)
|
1117 |
+
|
1118 |
+
def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None, attention_mask=None, masked_lm_labels=None, head_mask=None):
|
1119 |
+
outputs = self.bert(input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids, attention_mask,
|
1120 |
+
output_all_encoded_layers=False,
|
1121 |
+
head_mask=head_mask)
|
1122 |
+
if self.output_attentions:
|
1123 |
+
all_attentions, sequence_output, _ = outputs
|
1124 |
+
else:
|
1125 |
+
sequence_output, _ = outputs
|
1126 |
+
prediction_scores = self.cls(sequence_output)
|
1127 |
+
|
1128 |
+
if masked_lm_labels is not None:
|
1129 |
+
loss_fct = CrossEntropyLoss(ignore_index=-1)
|
1130 |
+
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
|
1131 |
+
return masked_lm_loss
|
1132 |
+
elif self.output_attentions:
|
1133 |
+
return all_attentions, prediction_scores
|
1134 |
+
return prediction_scores
|
1135 |
+
|
1136 |
+
|
1137 |
+
class ZenForNextSentencePrediction(ZenPreTrainedModel):
|
1138 |
+
"""ZEN model with next sentence prediction head.
|
1139 |
+
This module comprises the ZEN model followed by the next sentence classification head.
|
1140 |
+
|
1141 |
+
Params:
|
1142 |
+
`config`: a BertConfig class instance with the configuration to build a new model
|
1143 |
+
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
|
1144 |
+
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
|
1145 |
+
This can be used to compute head importance metrics. Default: False
|
1146 |
+
|
1147 |
+
Inputs:
|
1148 |
+
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
|
1149 |
+
with the word token indices in the vocabulary
|
1150 |
+
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
|
1151 |
+
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
|
1152 |
+
a `sentence B` token (see BERT paper for more details).
|
1153 |
+
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
|
1154 |
+
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
|
1155 |
+
input sequence length in the current batch. It's the mask that we typically use for attention when
|
1156 |
+
a batch has varying length sentences.
|
1157 |
+
`next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size]
|
1158 |
+
with indices selected in [0, 1].
|
1159 |
+
0 => next sentence is the continuation, 1 => next sentence is a random sentence.
|
1160 |
+
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
|
1161 |
+
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
|
1162 |
+
`input_ngram_ids`: input_ids of ngrams.
|
1163 |
+
`ngram_token_type_ids`: token_type_ids of ngrams.
|
1164 |
+
`ngram_attention_mask`: attention_mask of ngrams.
|
1165 |
+
`ngram_position_matrix`: position matrix of ngrams.
|
1166 |
+
|
1167 |
+
Outputs:
|
1168 |
+
if `next_sentence_label` is not `None`:
|
1169 |
+
Outputs the total_loss which is the sum of the masked language modeling loss and the next
|
1170 |
+
sentence classification loss.
|
1171 |
+
if `next_sentence_label` is `None`:
|
1172 |
+
Outputs the next sentence classification logits of shape [batch_size, 2].
|
1173 |
+
|
1174 |
+
"""
|
1175 |
+
|
1176 |
+
def __init__(self, config, output_attentions=False, keep_multihead_output=False):
|
1177 |
+
super(ZenForNextSentencePrediction, self).__init__(config)
|
1178 |
+
self.output_attentions = output_attentions
|
1179 |
+
self.bert = ZenModel(config, output_attentions=output_attentions,
|
1180 |
+
keep_multihead_output=keep_multihead_output)
|
1181 |
+
self.cls = ZenOnlyNSPHead(config)
|
1182 |
+
self.apply(self.init_bert_weights)
|
1183 |
+
|
1184 |
+
def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None, attention_mask=None, next_sentence_label=None, head_mask=None):
|
1185 |
+
outputs = self.bert(input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids, attention_mask,
|
1186 |
+
output_all_encoded_layers=False,
|
1187 |
+
head_mask=head_mask)
|
1188 |
+
if self.output_attentions:
|
1189 |
+
all_attentions, _, pooled_output = outputs
|
1190 |
+
else:
|
1191 |
+
_, pooled_output = outputs
|
1192 |
+
seq_relationship_score = self.cls(pooled_output)
|
1193 |
+
|
1194 |
+
if next_sentence_label is not None:
|
1195 |
+
loss_fct = CrossEntropyLoss(ignore_index=-1)
|
1196 |
+
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
|
1197 |
+
return next_sentence_loss
|
1198 |
+
elif self.output_attentions:
|
1199 |
+
return all_attentions, seq_relationship_score
|
1200 |
+
return seq_relationship_score
|
1201 |
+
|
1202 |
+
|
1203 |
+
class ZenForSequenceClassification(ZenPreTrainedModel):
|
1204 |
+
"""ZEN model for classification.
|
1205 |
+
This module is composed of the ZEN model with a linear layer on top of
|
1206 |
+
the pooled output.
|
1207 |
+
|
1208 |
+
Params:
|
1209 |
+
`config`: a BertConfig class instance with the configuration to build a new model
|
1210 |
+
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
|
1211 |
+
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
|
1212 |
+
This can be used to compute head importance metrics. Default: False
|
1213 |
+
`num_labels`: the number of classes for the classifier. Default = 2.
|
1214 |
+
|
1215 |
+
Inputs:
|
1216 |
+
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
|
1217 |
+
with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts
|
1218 |
+
`extract_features.py`, `run_classifier.py` and `run_squad.py`)
|
1219 |
+
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
|
1220 |
+
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
|
1221 |
+
a `sentence B` token (see BERT paper for more details).
|
1222 |
+
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
|
1223 |
+
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
|
1224 |
+
input sequence length in the current batch. It's the mask that we typically use for attention when
|
1225 |
+
a batch has varying length sentences.
|
1226 |
+
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size]
|
1227 |
+
with indices selected in [0, ..., num_labels].
|
1228 |
+
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
|
1229 |
+
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
|
1230 |
+
`input_ngram_ids`: input_ids of ngrams.
|
1231 |
+
`ngram_token_type_ids`: token_type_ids of ngrams.
|
1232 |
+
`ngram_attention_mask`: attention_mask of ngrams.
|
1233 |
+
`ngram_position_matrix`: position matrix of ngrams.
|
1234 |
+
|
1235 |
+
Outputs:
|
1236 |
+
if `labels` is not `None`:
|
1237 |
+
Outputs the CrossEntropy classification loss of the output with the labels.
|
1238 |
+
if `labels` is `None`:
|
1239 |
+
Outputs the classification logits of shape [batch_size, num_labels].
|
1240 |
+
|
1241 |
+
"""
|
1242 |
+
|
1243 |
+
def __init__(self, config, num_labels=2, output_attentions=False, keep_multihead_output=False):
|
1244 |
+
super(ZenForSequenceClassification, self).__init__(config)
|
1245 |
+
self.output_attentions = output_attentions
|
1246 |
+
self.num_labels = num_labels
|
1247 |
+
self.bert = ZenModel(config, output_attentions=output_attentions,
|
1248 |
+
keep_multihead_output=keep_multihead_output)
|
1249 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1250 |
+
self.classifier = nn.Linear(config.hidden_size, num_labels)
|
1251 |
+
self.apply(self.init_bert_weights)
|
1252 |
+
|
1253 |
+
def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None, attention_mask=None, labels=None, head_mask=None):
|
1254 |
+
outputs = self.bert(input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids, attention_mask,
|
1255 |
+
output_all_encoded_layers=False,
|
1256 |
+
head_mask=head_mask)
|
1257 |
+
if self.output_attentions:
|
1258 |
+
all_attentions, _, pooled_output = outputs
|
1259 |
+
else:
|
1260 |
+
_, pooled_output = outputs
|
1261 |
+
pooled_output = self.dropout(pooled_output)
|
1262 |
+
logits = self.classifier(pooled_output)
|
1263 |
+
|
1264 |
+
if labels is not None:
|
1265 |
+
loss_fct = CrossEntropyLoss()
|
1266 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1267 |
+
return loss
|
1268 |
+
elif self.output_attentions:
|
1269 |
+
return all_attentions, logits
|
1270 |
+
return logits
|
1271 |
+
|
1272 |
+
class ZenForTokenClassification(ZenPreTrainedModel):
|
1273 |
+
"""ZEN model for token-level classification.
|
1274 |
+
This module is composed of the ZEN model with a linear layer on top of
|
1275 |
+
the full hidden state of the last layer.
|
1276 |
+
|
1277 |
+
Params:
|
1278 |
+
`config`: a BertConfig class instance with the configuration to build a new model
|
1279 |
+
`output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
|
1280 |
+
`keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
|
1281 |
+
This can be used to compute head importance metrics. Default: False
|
1282 |
+
`num_labels`: the number of classes for the classifier. Default = 2.
|
1283 |
+
|
1284 |
+
Inputs:
|
1285 |
+
`input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
|
1286 |
+
with the word token indices in the vocabulary
|
1287 |
+
`token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
|
1288 |
+
types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
|
1289 |
+
a `sentence B` token (see BERT paper for more details).
|
1290 |
+
`attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
|
1291 |
+
selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
|
1292 |
+
input sequence length in the current batch. It's the mask that we typically use for attention when
|
1293 |
+
a batch has varying length sentences.
|
1294 |
+
`labels`: labels for the classification output: torch.LongTensor of shape [batch_size, sequence_length]
|
1295 |
+
with indices selected in [0, ..., num_labels].
|
1296 |
+
`head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
|
1297 |
+
It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.
|
1298 |
+
`input_ngram_ids`: input_ids of ngrams.
|
1299 |
+
`ngram_token_type_ids`: token_type_ids of ngrams.
|
1300 |
+
`ngram_attention_mask`: attention_mask of ngrams.
|
1301 |
+
`ngram_position_matrix`: position matrix of ngrams.
|
1302 |
+
|
1303 |
+
Outputs:
|
1304 |
+
if `labels` is not `None`:
|
1305 |
+
Outputs the CrossEntropy classification loss of the output with the labels.
|
1306 |
+
if `labels` is `None`:
|
1307 |
+
Outputs the classification logits of shape [batch_size, sequence_length, num_labels].
|
1308 |
+
|
1309 |
+
"""
|
1310 |
+
|
1311 |
+
def __init__(self, config, num_labels=2, output_attentions=False, keep_multihead_output=False):
|
1312 |
+
super(ZenForTokenClassification, self).__init__(config)
|
1313 |
+
self.output_attentions = output_attentions
|
1314 |
+
self.num_labels = num_labels
|
1315 |
+
self.bert = ZenModel(config, output_attentions=output_attentions,
|
1316 |
+
keep_multihead_output=keep_multihead_output)
|
1317 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
1318 |
+
self.classifier = nn.Linear(config.hidden_size, num_labels)
|
1319 |
+
self.apply(self.init_bert_weights)
|
1320 |
+
|
1321 |
+
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, valid_ids=None,
|
1322 |
+
attention_mask_label=None, ngram_ids=None, ngram_positions=None, head_mask=None):
|
1323 |
+
outputs = self.bert(input_ids, ngram_ids, ngram_positions, token_type_ids, attention_mask,
|
1324 |
+
output_all_encoded_layers=False, head_mask=head_mask)
|
1325 |
+
if self.output_attentions:
|
1326 |
+
all_attentions, sequence_output, _ = outputs
|
1327 |
+
else:
|
1328 |
+
sequence_output, _ = outputs
|
1329 |
+
|
1330 |
+
batch_size, max_len, feat_dim = sequence_output.shape
|
1331 |
+
valid_output = torch.zeros(batch_size, max_len, feat_dim, dtype=torch.float32, device=input_ids.device)
|
1332 |
+
|
1333 |
+
if self.num_labels == 38:
|
1334 |
+
# just for POS to filter/mask input_ids=0
|
1335 |
+
for i in range(batch_size):
|
1336 |
+
temp = sequence_output[i][valid_ids[i] == 1]
|
1337 |
+
valid_output[i][:temp.size(0)] = temp
|
1338 |
+
else:
|
1339 |
+
valid_output = sequence_output
|
1340 |
+
|
1341 |
+
sequence_output = self.dropout(valid_output)
|
1342 |
+
logits = self.classifier(sequence_output)
|
1343 |
+
|
1344 |
+
if labels is not None:
|
1345 |
+
loss_fct = CrossEntropyLoss(ignore_index=0)
|
1346 |
+
# Only keep active parts of the loss
|
1347 |
+
attention_mask_label = None
|
1348 |
+
if attention_mask_label is not None:
|
1349 |
+
active_loss = attention_mask_label.view(-1) == 1
|
1350 |
+
active_logits = logits.view(-1, self.num_labels)[active_loss]
|
1351 |
+
active_labels = labels.view(-1)[active_loss]
|
1352 |
+
loss = loss_fct(active_logits, active_labels)
|
1353 |
+
else:
|
1354 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
1355 |
+
return loss
|
1356 |
+
else:
|
1357 |
+
return logits
|