shunxing1234 commited on
Commit
5a7af4d
·
1 Parent(s): 6ff525e

Upload 2 files

Browse files
Files changed (2) hide show
  1. configuration_aquila.py +113 -0
  2. modeling_aquila.py +893 -0
configuration_aquila.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ Aquila model configuration"""
21
+
22
+ from transformers import PretrainedConfig
23
+
24
+
25
+
26
+ class AquilaConfig(PretrainedConfig):
27
+ r"""
28
+ This is the configuration class to store the configuration of a [`AquilaModel`]. It is used to instantiate an Aquila
29
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
30
+ defaults will yield a similar configuration to that of the Aquila-7B.
31
+
32
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
33
+ documentation from [`PretrainedConfig`] for more information.
34
+
35
+
36
+ Args:
37
+ vocab_size (`int`, *optional*, defaults to 32000):
38
+ Vocabulary size of the Aquila model. Defines the number of different tokens that can be represented by the
39
+ `inputs_ids` passed when calling [`AquilaModel`]
40
+ hidden_size (`int`, *optional*, defaults to 4096):
41
+ Dimension of the hidden representations.
42
+ intermediate_size (`int`, *optional*, defaults to 11008):
43
+ Dimension of the MLP representations.
44
+ num_hidden_layers (`int`, *optional*, defaults to 32):
45
+ Number of hidden layers in the Transformer encoder.
46
+ num_attention_heads (`int`, *optional*, defaults to 32):
47
+ Number of attention heads for each attention layer in the Transformer encoder.
48
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
49
+ The non-linear activation function (function or string) in the decoder.
50
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
51
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
52
+ just in case (e.g., 512 or 1024 or 2048).
53
+ initializer_range (`float`, *optional*, defaults to 0.02):
54
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
55
+ rms_norm_eps (`float`, *optional*, defaults to 1e-12):
56
+ The epsilon used by the rms normalization layers.
57
+ use_cache (`bool`, *optional*, defaults to `True`):
58
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
59
+ relevant if `config.is_decoder=True`.
60
+ tie_word_embeddings(`bool`, *optional*, defaults to `False`):
61
+ Whether to tie weight embeddings
62
+ Example:
63
+
64
+ ```python
65
+ >>> from transformers import AquilaModel, AquilaConfig
66
+
67
+ >>> # Initializing a Aquila aquila-7b style configuration
68
+ >>> configuration = AquilaConfig()
69
+
70
+ >>> # Initializing a model from the aquila-7b style configuration
71
+ >>> model = AquilaModel(configuration)
72
+
73
+ >>> # Accessing the model configuration
74
+ >>> configuration = model.config
75
+ ```"""
76
+ model_type = "aquila"
77
+ keys_to_ignore_at_inference = ["past_key_values"]
78
+
79
+ def __init__(
80
+ self,
81
+ vocab_size=100008,
82
+ hidden_size=4096,
83
+ intermediate_size=11008,
84
+ num_hidden_layers=32,
85
+ num_attention_heads=32,
86
+ hidden_act="silu",
87
+ max_position_embeddings=2048,
88
+ initializer_range=0.02,
89
+ rms_norm_eps=1e-6,
90
+ use_cache=True,
91
+ pad_token_id=0,
92
+ bos_token_id=1,
93
+ eos_token_id=2,
94
+ tie_word_embeddings=False,
95
+ **kwargs,
96
+ ):
97
+ self.vocab_size = vocab_size
98
+ self.max_position_embeddings = max_position_embeddings
99
+ self.hidden_size = hidden_size
100
+ self.intermediate_size = intermediate_size
101
+ self.num_hidden_layers = num_hidden_layers
102
+ self.num_attention_heads = num_attention_heads
103
+ self.hidden_act = hidden_act
104
+ self.initializer_range = initializer_range
105
+ self.rms_norm_eps = rms_norm_eps
106
+ self.use_cache = use_cache
107
+ super().__init__(
108
+ pad_token_id=pad_token_id,
109
+ bos_token_id=bos_token_id,
110
+ eos_token_id=eos_token_id,
111
+ tie_word_embeddings=tie_word_embeddings,
112
+ **kwargs,
113
+ )
modeling_aquila.py ADDED
@@ -0,0 +1,893 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 EleutherAI and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch Aquila model."""
21
+ import math
22
+ from typing import List, Optional, Tuple, Union
23
+
24
+ import torch
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+
29
+ from transformers.activations import ACT2FN
30
+ from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
31
+ from transformers.modeling_utils import PreTrainedModel
32
+ from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
33
+ from .configuration_aquila import AquilaConfig
34
+
35
+
36
+ logger = logging.get_logger(__name__)
37
+
38
+ _CONFIG_FOR_DOC = "AquilaConfig"
39
+
40
+
41
+ # Copied from transformers.models.bart.modeling_bart._make_causal_mask
42
+ def _make_causal_mask(
43
+ input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
44
+ ):
45
+ """
46
+ Make causal mask used for bi-directional self-attention.
47
+ """
48
+ bsz, tgt_len = input_ids_shape
49
+ mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
50
+ mask_cond = torch.arange(mask.size(-1), device=device)
51
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
52
+ mask = mask.to(dtype)
53
+
54
+ if past_key_values_length > 0:
55
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
56
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
57
+
58
+
59
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
60
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
61
+ """
62
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
63
+ """
64
+ bsz, src_len = mask.size()
65
+ tgt_len = tgt_len if tgt_len is not None else src_len
66
+
67
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
68
+
69
+ inverted_mask = 1.0 - expanded_mask
70
+
71
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
72
+
73
+
74
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Aquila
75
+ class AquilaRMSNorm(nn.Module):
76
+ def __init__(self, hidden_size, eps=1e-6):
77
+ """
78
+ AquilaRMSNorm is equivalent to T5LayerNorm
79
+ """
80
+ super().__init__()
81
+ self.weight = nn.Parameter(torch.ones(hidden_size))
82
+ self.variance_epsilon = eps
83
+
84
+ def forward(self, hidden_states):
85
+ input_dtype = hidden_states.dtype
86
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
87
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
88
+
89
+ return (self.weight * hidden_states).to(input_dtype)
90
+
91
+
92
+ # Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Aquila
93
+ class AquilaRotaryEmbedding(torch.nn.Module):
94
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
95
+ super().__init__()
96
+ inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
97
+ self.register_buffer("inv_freq", inv_freq)
98
+
99
+ # Build here to make `torch.jit.trace` work.
100
+ self.max_seq_len_cached = max_position_embeddings
101
+ t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
102
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
103
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
104
+ emb = torch.cat((freqs, freqs), dim=-1)
105
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
106
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
107
+
108
+ def forward(self, x, seq_len=None):
109
+ # x: [bs, num_attention_heads, seq_len, head_size]
110
+ # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
111
+ if seq_len > self.max_seq_len_cached:
112
+ self.max_seq_len_cached = seq_len
113
+ t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
114
+ freqs = torch.einsum("i,j->ij", t, self.inv_freq)
115
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
116
+ emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
117
+ self.register_buffer("cos_cached", emb.cos()[None, None, :, :], persistent=False)
118
+ self.register_buffer("sin_cached", emb.sin()[None, None, :, :], persistent=False)
119
+ return (
120
+ self.cos_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
121
+ self.sin_cached[:, :, :seq_len, ...].to(dtype=x.dtype),
122
+ )
123
+
124
+
125
+ def rotate_half(x):
126
+ """Rotates half the hidden dims of the input."""
127
+ x1 = x[..., : x.shape[-1] // 2]
128
+ x2 = x[..., x.shape[-1] // 2 :]
129
+ return torch.cat((-x2, x1), dim=-1)
130
+
131
+
132
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
133
+ # The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
134
+ cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
135
+ sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
136
+ cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
137
+ sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
138
+ q_embed = (q * cos) + (rotate_half(q) * sin)
139
+ k_embed = (k * cos) + (rotate_half(k) * sin)
140
+ return q_embed, k_embed
141
+
142
+
143
+ # Copied from transformers.models.llama.modeling_llama.LlamaMLP with Llama->Aquila
144
+ class AquilaMLP(nn.Module):
145
+ def __init__(
146
+ self,
147
+ hidden_size: int,
148
+ intermediate_size: int,
149
+ hidden_act: str,
150
+ ):
151
+ super().__init__()
152
+ self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
153
+ self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
154
+ self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
155
+ self.act_fn = ACT2FN[hidden_act]
156
+
157
+ def forward(self, x):
158
+ return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
159
+
160
+
161
+ # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->Aquila
162
+ class AquilaAttention(nn.Module):
163
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
164
+
165
+ def __init__(self, config: AquilaConfig):
166
+ super().__init__()
167
+ self.config = config
168
+ self.hidden_size = config.hidden_size
169
+ self.num_heads = config.num_attention_heads
170
+ self.head_dim = self.hidden_size // self.num_heads
171
+ self.max_position_embeddings = config.max_position_embeddings
172
+
173
+ if (self.head_dim * self.num_heads) != self.hidden_size:
174
+ raise ValueError(
175
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
176
+ f" and `num_heads`: {self.num_heads})."
177
+ )
178
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
179
+ self.k_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
180
+ self.v_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
181
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
182
+ self.rotary_emb = AquilaRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
183
+
184
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
185
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
186
+
187
+ def forward(
188
+ self,
189
+ hidden_states: torch.Tensor,
190
+ attention_mask: Optional[torch.Tensor] = None,
191
+ position_ids: Optional[torch.LongTensor] = None,
192
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
193
+ output_attentions: bool = False,
194
+ use_cache: bool = False,
195
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
196
+ bsz, q_len, _ = hidden_states.size()
197
+
198
+ query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
199
+ key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
200
+ value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
201
+
202
+ kv_seq_len = key_states.shape[-2]
203
+ if past_key_value is not None:
204
+ kv_seq_len += past_key_value[0].shape[-2]
205
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
206
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
207
+ # [bsz, nh, t, hd]
208
+
209
+ if past_key_value is not None:
210
+ # reuse k, v, self_attention
211
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
212
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
213
+
214
+ past_key_value = (key_states, value_states) if use_cache else None
215
+
216
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
217
+
218
+ attn_weights = torch.clamp(attn_weights, min=-1024., max=1024.)
219
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
220
+ raise ValueError(
221
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
222
+ f" {attn_weights.size()}"
223
+ )
224
+
225
+ if attention_mask is not None:
226
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
227
+ raise ValueError(
228
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
229
+ )
230
+ attn_weights = attn_weights + attention_mask
231
+ attn_weights = torch.max(
232
+ attn_weights, torch.tensor(torch.finfo(attn_weights.dtype).min, device=attn_weights.device)
233
+ )
234
+
235
+ # upcast attention to fp32
236
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
237
+ attn_output = torch.matmul(attn_weights, value_states)
238
+
239
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
240
+ raise ValueError(
241
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
242
+ f" {attn_output.size()}"
243
+ )
244
+
245
+ attn_output = attn_output.transpose(1, 2)
246
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
247
+
248
+ attn_output = self.o_proj(attn_output)
249
+
250
+ if not output_attentions:
251
+ attn_weights = None
252
+
253
+ return attn_output, attn_weights, past_key_value
254
+
255
+
256
+ # Copied from transformers.models.llama.modeling_llama.LlamaDecoderLayer with Llama->Aquila
257
+ class AquilaDecoderLayer(nn.Module):
258
+ def __init__(self, config: AquilaConfig):
259
+ super().__init__()
260
+ self.hidden_size = config.hidden_size
261
+ self.self_attn = AquilaAttention(config=config)
262
+ self.mlp = AquilaMLP(
263
+ hidden_size=self.hidden_size,
264
+ intermediate_size=config.intermediate_size,
265
+ hidden_act=config.hidden_act,
266
+ )
267
+ self.input_layernorm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
268
+ self.post_attention_layernorm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
269
+
270
+ def forward(
271
+ self,
272
+ hidden_states: torch.Tensor,
273
+ attention_mask: Optional[torch.Tensor] = None,
274
+ position_ids: Optional[torch.LongTensor] = None,
275
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
276
+ output_attentions: Optional[bool] = False,
277
+ use_cache: Optional[bool] = False,
278
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
279
+ """
280
+ Args:
281
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
282
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
283
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
284
+ output_attentions (`bool`, *optional*):
285
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
286
+ returned tensors for more detail.
287
+ use_cache (`bool`, *optional*):
288
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
289
+ (see `past_key_values`).
290
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
291
+ """
292
+
293
+ residual = hidden_states
294
+
295
+ hidden_states = self.input_layernorm(hidden_states)
296
+
297
+ # Self Attention
298
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
299
+ hidden_states=hidden_states,
300
+ attention_mask=attention_mask,
301
+ position_ids=position_ids,
302
+ past_key_value=past_key_value,
303
+ output_attentions=output_attentions,
304
+ use_cache=use_cache,
305
+ )
306
+ hidden_states = residual + hidden_states
307
+
308
+ # Fully Connected
309
+ residual = hidden_states
310
+ hidden_states = self.post_attention_layernorm(hidden_states)
311
+ hidden_states = self.mlp(hidden_states)
312
+ hidden_states = residual + hidden_states
313
+
314
+ outputs = (hidden_states,)
315
+
316
+ if output_attentions:
317
+ outputs += (self_attn_weights,)
318
+
319
+ if use_cache:
320
+ outputs += (present_key_value,)
321
+
322
+ return outputs
323
+
324
+
325
+ AQUILA_START_DOCSTRING = r"""
326
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
327
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
328
+ etc.)
329
+
330
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
331
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
332
+ and behavior.
333
+
334
+ Parameters:
335
+ config ([`AquilaConfig`]):
336
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
337
+ load the weights associated with the model, only the configuration. Check out the
338
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
339
+ """
340
+
341
+
342
+ @add_start_docstrings(
343
+ "The bare Aquila Model outputting raw hidden-states without any specific head on top.",
344
+ AQUILA_START_DOCSTRING,
345
+ )
346
+ # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->Aquila
347
+ class AquilaPreTrainedModel(PreTrainedModel):
348
+ config_class = AquilaConfig
349
+ base_model_prefix = "model"
350
+ supports_gradient_checkpointing = True
351
+ _no_split_modules = ["AquilaDecoderLayer"]
352
+ _skip_keys_device_placement = "past_key_values"
353
+ _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
354
+
355
+ def _init_weights(self, module):
356
+ std = self.config.initializer_range
357
+ if isinstance(module, nn.Linear):
358
+ module.weight.data.normal_(mean=0.0, std=std)
359
+ if module.bias is not None:
360
+ module.bias.data.zero_()
361
+ elif isinstance(module, nn.Embedding):
362
+ module.weight.data.normal_(mean=0.0, std=std)
363
+ if module.padding_idx is not None:
364
+ module.weight.data[module.padding_idx].zero_()
365
+
366
+ def _set_gradient_checkpointing(self, module, value=False):
367
+ if isinstance(module, AquilaModel):
368
+ module.gradient_checkpointing = value
369
+
370
+
371
+ AQUILA_INPUTS_DOCSTRING = r"""
372
+ Args:
373
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
374
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
375
+ it.
376
+
377
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
378
+ [`PreTrainedTokenizer.__call__`] for details.
379
+
380
+ [What are input IDs?](../glossary#input-ids)
381
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
382
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
383
+
384
+ - 1 for tokens that are **not masked**,
385
+ - 0 for tokens that are **masked**.
386
+
387
+ [What are attention masks?](../glossary#attention-mask)
388
+
389
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
390
+ [`PreTrainedTokenizer.__call__`] for details.
391
+
392
+ If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
393
+ `past_key_values`).
394
+
395
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
396
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
397
+ information on the default strategy.
398
+
399
+ - 1 indicates the head is **not masked**,
400
+ - 0 indicates the head is **masked**.
401
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
402
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
403
+ config.n_positions - 1]`.
404
+
405
+ [What are position IDs?](../glossary#position-ids)
406
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
407
+ Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
408
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
409
+ `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
410
+
411
+ Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
412
+ blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
413
+
414
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
415
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
416
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
417
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
418
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
419
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
420
+ model's internal embedding lookup matrix.
421
+ use_cache (`bool`, *optional*):
422
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
423
+ `past_key_values`).
424
+ output_attentions (`bool`, *optional*):
425
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
426
+ tensors for more detail.
427
+ output_hidden_states (`bool`, *optional*):
428
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
429
+ more detail.
430
+ return_dict (`bool`, *optional*):
431
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
432
+ """
433
+
434
+
435
+ @add_start_docstrings(
436
+ "The bare Aquila Model outputting raw hidden-states without any specific head on top.",
437
+ AQUILA_START_DOCSTRING,
438
+ )
439
+ # Copied from transformers.models.llama.modeling_llama.LlamaModel with LLAMA->AQUILA,Llama->Aquila
440
+ class AquilaModel(AquilaPreTrainedModel):
441
+ """
442
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`AquilaDecoderLayer`]
443
+
444
+ Args:
445
+ config: AquilaConfig
446
+ """
447
+
448
+ def __init__(self, config: AquilaConfig):
449
+ super().__init__(config)
450
+ self.padding_idx = config.pad_token_id
451
+ self.vocab_size = config.vocab_size
452
+
453
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
454
+ self.layers = nn.ModuleList([AquilaDecoderLayer(config) for _ in range(config.num_hidden_layers)])
455
+ self.norm = AquilaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
456
+
457
+ self.gradient_checkpointing = False
458
+ # Initialize weights and apply final processing
459
+ self.post_init()
460
+
461
+ def get_input_embeddings(self):
462
+ return self.embed_tokens
463
+
464
+ def set_input_embeddings(self, value):
465
+ self.embed_tokens = value
466
+
467
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
468
+ # create causal mask
469
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
470
+ combined_attention_mask = None
471
+ if input_shape[-1] > 1:
472
+ combined_attention_mask = _make_causal_mask(
473
+ input_shape,
474
+ inputs_embeds.dtype,
475
+ device=inputs_embeds.device,
476
+ past_key_values_length=past_key_values_length,
477
+ )
478
+
479
+ if attention_mask is not None:
480
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
481
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
482
+ inputs_embeds.device
483
+ )
484
+ combined_attention_mask = (
485
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
486
+ )
487
+
488
+ return combined_attention_mask
489
+
490
+ @add_start_docstrings_to_model_forward(AQUILA_INPUTS_DOCSTRING)
491
+ def forward(
492
+ self,
493
+ input_ids: torch.LongTensor = None,
494
+ attention_mask: Optional[torch.Tensor] = None,
495
+ position_ids: Optional[torch.LongTensor] = None,
496
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
497
+ inputs_embeds: Optional[torch.FloatTensor] = None,
498
+ use_cache: Optional[bool] = None,
499
+ output_attentions: Optional[bool] = None,
500
+ output_hidden_states: Optional[bool] = None,
501
+ return_dict: Optional[bool] = None,
502
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
503
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
504
+ output_hidden_states = (
505
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
506
+ )
507
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
508
+
509
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
510
+
511
+ # retrieve input_ids and inputs_embeds
512
+ if input_ids is not None and inputs_embeds is not None:
513
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
514
+ elif input_ids is not None:
515
+ batch_size, seq_length = input_ids.shape
516
+ elif inputs_embeds is not None:
517
+ batch_size, seq_length, _ = inputs_embeds.shape
518
+ else:
519
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
520
+
521
+ seq_length_with_past = seq_length
522
+ past_key_values_length = 0
523
+
524
+ if past_key_values is not None:
525
+ past_key_values_length = past_key_values[0][0].shape[2]
526
+ seq_length_with_past = seq_length_with_past + past_key_values_length
527
+
528
+ if position_ids is None:
529
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
530
+ position_ids = torch.arange(
531
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
532
+ )
533
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
534
+ else:
535
+ position_ids = position_ids.view(-1, seq_length).long()
536
+
537
+ if inputs_embeds is None:
538
+ inputs_embeds = self.embed_tokens(input_ids)
539
+ # embed positions
540
+ if attention_mask is None:
541
+ attention_mask = torch.ones(
542
+ (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
543
+ )
544
+ attention_mask = self._prepare_decoder_attention_mask(
545
+ attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
546
+ )
547
+
548
+ hidden_states = inputs_embeds
549
+
550
+ if self.gradient_checkpointing and self.training:
551
+ if use_cache:
552
+ logger.warning_once(
553
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
554
+ )
555
+ use_cache = False
556
+
557
+ # decoder layers
558
+ all_hidden_states = () if output_hidden_states else None
559
+ all_self_attns = () if output_attentions else None
560
+ next_decoder_cache = () if use_cache else None
561
+
562
+ for idx, decoder_layer in enumerate(self.layers):
563
+ if output_hidden_states:
564
+ all_hidden_states += (hidden_states,)
565
+
566
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
567
+
568
+ if self.gradient_checkpointing and self.training:
569
+
570
+ def create_custom_forward(module):
571
+ def custom_forward(*inputs):
572
+ # None for past_key_value
573
+ return module(*inputs, output_attentions, None)
574
+
575
+ return custom_forward
576
+
577
+ layer_outputs = torch.utils.checkpoint.checkpoint(
578
+ create_custom_forward(decoder_layer),
579
+ hidden_states,
580
+ attention_mask,
581
+ position_ids,
582
+ None,
583
+ )
584
+ else:
585
+ layer_outputs = decoder_layer(
586
+ hidden_states,
587
+ attention_mask=attention_mask,
588
+ position_ids=position_ids,
589
+ past_key_value=past_key_value,
590
+ output_attentions=output_attentions,
591
+ use_cache=use_cache,
592
+ )
593
+
594
+ hidden_states = layer_outputs[0]
595
+
596
+ if use_cache:
597
+ next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
598
+
599
+ if output_attentions:
600
+ all_self_attns += (layer_outputs[1],)
601
+
602
+ hidden_states = self.norm(hidden_states)
603
+ # add hidden states from the last decoder layer
604
+ if output_hidden_states:
605
+ all_hidden_states += (hidden_states,)
606
+
607
+ next_cache = next_decoder_cache if use_cache else None
608
+ if not return_dict:
609
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
610
+ return BaseModelOutputWithPast(
611
+ last_hidden_state=hidden_states,
612
+ past_key_values=next_cache,
613
+ hidden_states=all_hidden_states,
614
+ attentions=all_self_attns,
615
+ )
616
+
617
+
618
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM with LLAMA->AQUILA,Llama->Aquila
619
+ class AquilaForCausalLM(AquilaPreTrainedModel):
620
+ def __init__(self, config):
621
+ super().__init__(config)
622
+ self.model = AquilaModel(config)
623
+
624
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
625
+
626
+ # Initialize weights and apply final processing
627
+ self.post_init()
628
+
629
+ def get_input_embeddings(self):
630
+ return self.model.embed_tokens
631
+
632
+ def set_input_embeddings(self, value):
633
+ self.model.embed_tokens = value
634
+
635
+ def get_output_embeddings(self):
636
+ return self.lm_head
637
+
638
+ def set_output_embeddings(self, new_embeddings):
639
+ self.lm_head = new_embeddings
640
+
641
+ def set_decoder(self, decoder):
642
+ self.model = decoder
643
+
644
+ def get_decoder(self):
645
+ return self.model
646
+
647
+ @add_start_docstrings_to_model_forward(AQUILA_INPUTS_DOCSTRING)
648
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
649
+ def forward(
650
+ self,
651
+ input_ids: torch.LongTensor = None,
652
+ attention_mask: Optional[torch.Tensor] = None,
653
+ position_ids: Optional[torch.LongTensor] = None,
654
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
655
+ inputs_embeds: Optional[torch.FloatTensor] = None,
656
+ labels: Optional[torch.LongTensor] = None,
657
+ use_cache: Optional[bool] = None,
658
+ output_attentions: Optional[bool] = None,
659
+ output_hidden_states: Optional[bool] = None,
660
+ return_dict: Optional[bool] = None,
661
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
662
+ r"""
663
+ Args:
664
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
665
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
666
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
667
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
668
+
669
+ Returns:
670
+
671
+ Example:
672
+
673
+ ```python
674
+ >>> from transformers import AutoTokenizer, AquilaForCausalLM
675
+
676
+ >>> model = AquilaForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
677
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
678
+
679
+ >>> prompt = "Hey, are you consciours? Can you talk to me?"
680
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
681
+
682
+ >>> # Generate
683
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
684
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
685
+ "Hey, are you consciours? Can you talk to me?\nI'm not consciours, but I can talk to you."
686
+ ```"""
687
+
688
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
689
+ output_hidden_states = (
690
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
691
+ )
692
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
693
+
694
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
695
+ outputs = self.model(
696
+ input_ids=input_ids,
697
+ attention_mask=attention_mask,
698
+ position_ids=position_ids,
699
+ past_key_values=past_key_values,
700
+ inputs_embeds=inputs_embeds,
701
+ use_cache=use_cache,
702
+ output_attentions=output_attentions,
703
+ output_hidden_states=output_hidden_states,
704
+ return_dict=return_dict,
705
+ )
706
+
707
+ hidden_states = outputs[0]
708
+ logits = self.lm_head(hidden_states)
709
+
710
+ loss = None
711
+ if labels is not None:
712
+ # Shift so that tokens < n predict n
713
+ shift_logits = logits[..., :-1, :].contiguous()
714
+ shift_labels = labels[..., 1:].contiguous()
715
+ # Flatten the tokens
716
+ loss_fct = CrossEntropyLoss()
717
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
718
+ shift_labels = shift_labels.view(-1)
719
+ # Enable model parallelism
720
+ shift_labels = shift_labels.to(shift_logits.device)
721
+ loss = loss_fct(shift_logits, shift_labels)
722
+
723
+ if not return_dict:
724
+ output = (logits,) + outputs[1:]
725
+ return (loss,) + output if loss is not None else output
726
+
727
+ return CausalLMOutputWithPast(
728
+ loss=loss,
729
+ logits=logits,
730
+ past_key_values=outputs.past_key_values,
731
+ hidden_states=outputs.hidden_states,
732
+ attentions=outputs.attentions,
733
+ )
734
+
735
+ def prepare_inputs_for_generation(
736
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
737
+ ):
738
+ if past_key_values:
739
+ input_ids = input_ids[:, -1:]
740
+
741
+ position_ids = kwargs.get("position_ids", None)
742
+ if attention_mask is not None and position_ids is None:
743
+ # create position_ids on the fly for batch generation
744
+ position_ids = attention_mask.long().cumsum(-1) - 1
745
+ position_ids.masked_fill_(attention_mask == 0, 1)
746
+ if past_key_values:
747
+ position_ids = position_ids[:, -1].unsqueeze(-1)
748
+
749
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
750
+ if inputs_embeds is not None and past_key_values is None:
751
+ model_inputs = {"inputs_embeds": inputs_embeds}
752
+ else:
753
+ model_inputs = {"input_ids": input_ids}
754
+
755
+ model_inputs.update(
756
+ {
757
+ "position_ids": position_ids,
758
+ "past_key_values": past_key_values,
759
+ "use_cache": kwargs.get("use_cache"),
760
+ "attention_mask": attention_mask,
761
+ }
762
+ )
763
+ return model_inputs
764
+
765
+ @staticmethod
766
+ def _reorder_cache(past_key_values, beam_idx):
767
+ reordered_past = ()
768
+ for layer_past in past_key_values:
769
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
770
+ return reordered_past
771
+
772
+
773
+ @add_start_docstrings(
774
+ """
775
+ The LLaMa Model transformer with a sequence classification head on top (linear layer).
776
+
777
+ [`AquilaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
778
+ (e.g. GPT-2) do.
779
+
780
+ Since it does classification on the last token, it requires to know the position of the last token. If a
781
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
782
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
783
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
784
+ each row of the batch).
785
+ """,
786
+ AQUILA_START_DOCSTRING,
787
+ )
788
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with LLAMA->AQUILA,Llama->Aquila
789
+ class AquilaForSequenceClassification(AquilaPreTrainedModel):
790
+ _keys_to_ignore_on_load_missing = [r"lm_head.weight"]
791
+
792
+ def __init__(self, config):
793
+ super().__init__(config)
794
+ self.num_labels = config.num_labels
795
+ self.model = AquilaModel(config)
796
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
797
+
798
+ # Initialize weights and apply final processing
799
+ self.post_init()
800
+
801
+ def get_input_embeddings(self):
802
+ return self.model.embed_tokens
803
+
804
+ def set_input_embeddings(self, value):
805
+ self.model.embed_tokens = value
806
+
807
+ @add_start_docstrings_to_model_forward(AQUILA_INPUTS_DOCSTRING)
808
+ def forward(
809
+ self,
810
+ input_ids: torch.LongTensor = None,
811
+ attention_mask: Optional[torch.Tensor] = None,
812
+ position_ids: Optional[torch.LongTensor] = None,
813
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
814
+ inputs_embeds: Optional[torch.FloatTensor] = None,
815
+ labels: Optional[torch.LongTensor] = None,
816
+ use_cache: Optional[bool] = None,
817
+ output_attentions: Optional[bool] = None,
818
+ output_hidden_states: Optional[bool] = None,
819
+ return_dict: Optional[bool] = None,
820
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
821
+ r"""
822
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
823
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
824
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
825
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
826
+ """
827
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
828
+
829
+ transformer_outputs = self.model(
830
+ input_ids,
831
+ attention_mask=attention_mask,
832
+ position_ids=position_ids,
833
+ past_key_values=past_key_values,
834
+ inputs_embeds=inputs_embeds,
835
+ use_cache=use_cache,
836
+ output_attentions=output_attentions,
837
+ output_hidden_states=output_hidden_states,
838
+ return_dict=return_dict,
839
+ )
840
+ hidden_states = transformer_outputs[0]
841
+ logits = self.score(hidden_states)
842
+
843
+ if input_ids is not None:
844
+ batch_size = input_ids.shape[0]
845
+ else:
846
+ batch_size = inputs_embeds.shape[0]
847
+
848
+ if self.config.pad_token_id is None and batch_size != 1:
849
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
850
+ if self.config.pad_token_id is None:
851
+ sequence_lengths = -1
852
+ else:
853
+ if input_ids is not None:
854
+ sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device)
855
+ else:
856
+ sequence_lengths = -1
857
+
858
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
859
+
860
+ loss = None
861
+ if labels is not None:
862
+ labels = labels.to(logits.device)
863
+ if self.config.problem_type is None:
864
+ if self.num_labels == 1:
865
+ self.config.problem_type = "regression"
866
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
867
+ self.config.problem_type = "single_label_classification"
868
+ else:
869
+ self.config.problem_type = "multi_label_classification"
870
+
871
+ if self.config.problem_type == "regression":
872
+ loss_fct = MSELoss()
873
+ if self.num_labels == 1:
874
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
875
+ else:
876
+ loss = loss_fct(pooled_logits, labels)
877
+ elif self.config.problem_type == "single_label_classification":
878
+ loss_fct = CrossEntropyLoss()
879
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
880
+ elif self.config.problem_type == "multi_label_classification":
881
+ loss_fct = BCEWithLogitsLoss()
882
+ loss = loss_fct(pooled_logits, labels)
883
+ if not return_dict:
884
+ output = (pooled_logits,) + transformer_outputs[1:]
885
+ return ((loss,) + output) if loss is not None else output
886
+
887
+ return SequenceClassifierOutputWithPast(
888
+ loss=loss,
889
+ logits=pooled_logits,
890
+ past_key_values=transformer_outputs.past_key_values,
891
+ hidden_states=transformer_outputs.hidden_states,
892
+ attentions=transformer_outputs.attentions,
893
+ )