Jacob12345 commited on
Commit
13f2bd7
·
1 Parent(s): a067597

Upload best PPO LunarLander-v2 agent (tuned with Optuna).

Browse files
PPO-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78f0c83ef03024da881065ec486fa0d005270fc8c5377ff8affe0ababb2cfb28
3
+ size 147157
PPO-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
PPO-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f77dbb495f0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f77dbb49680>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f77dbb49710>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f77dbb497a0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f77dbb49830>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f77dbb498c0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f77dbb49950>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f77dbb499e0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f77dbb49a70>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f77dbb49b00>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f77dbb49b90>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f77dbb8acf0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1622016,
46
+ "_total_timesteps": 1608249,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1665512720934769636,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAJkEjvnbfPz+KH1e9tqTZvq7FEb5GEdo9AAAAAAAAAAAAxIa7KaxDusaCIr2xOjQzfhUvuwZvabMAAIA/AAAAAJphDL0D4g89AWavPSvdWr5/2jS5UZSFPQAAAAAAAAAATQsKPaJvrj9S/cc+rbS4vul1yTuOoQo+AAAAAAAAAADNj4y8Jvw5Px1Iiz2Z3OC+Eh2UPOIQSTwAAAAAAAAAADMbJjzzJa4/wNETPjU84b6zHz48w6wEPgAAAAAAAAAAzd39PcWepj5rCfG9N0+7vkmeXD0NImW9AAAAAAAAAADNZq88MTYZPrG5xD6P8cG+lx6BPjkquDwAAAAAAAAAAM2f571lvHc/6B0wvmVhA79WFBC+ptjlvAAAAAAAAAAA5o8UvSY/DD+SUHm8DP/bvm01mrw+IDs7AAAAAAAAAAAAfxY97Bn9uZIkLTeJAt+x3/LfuxrvSrYAAIA/AACAP01RFj0b+Sw/q6bpvO1H6b4Odf08QkrhPAAAAAAAAAAAZo7cvHYkF7zNlNY9bvDpvT+Dfb11/h+/AACAPwAAgD8NUGM+A8bMPm1ZI77SxNi+zFcMPoqPDb4AAAAAAAAAANoAwb0xt5o+NrFMPmB6sr5RW5U9VgeyOQAAAAAAAAAAALZpvE+WGrxXpAm+WyyEvhmmtTuTg3k/AACAPwAAgD+UdJRiLg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.008560241604378405,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gASVJRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINPeQ8D15b0CUhpRSlIwBbJRL14wBdJRHQM7oZOclPad1fZQoaAZoCWgPQwifH0YIj3ZxQJSGlFKUaBVNCAFoFkdAzuhserdWQ3V9lChoBmgJaA9DCB9q2zDKbXBAlIaUUpRoFUvRaBZHQM7ocLbg0j11fZQoaAZoCWgPQwjZ0TjUL9lxQJSGlFKUaBVL9mgWR0DO6HohOgxrdX2UKGgGaAloD0MIRIoBEs0AbUCUhpRSlGgVS9RoFkdAzuiBoaDPGHV9lChoBmgJaA9DCNP4hVdSvnFAlIaUUpRoFUv6aBZHQM7onI4EOiF1fZQoaAZoCWgPQwjCFrt9VlpyQJSGlFKUaBVL5WgWR0DO6J0MG5c1dX2UKGgGaAloD0MIldbfEgDHcECUhpRSlGgVS/BoFkdAzuinvMr3CnV9lChoBmgJaA9DCITZBBgW6G9AlIaUUpRoFUvlaBZHQM7ouiwr1/V1fZQoaAZoCWgPQwhBmxw+acJvQJSGlFKUaBVLzWgWR0DO6MrBO58SdX2UKGgGaAloD0MIrDjVWlhTcUCUhpRSlGgVS9ZoFkdAzujpF6RhdHV9lChoBmgJaA9DCDTZP08D03FAlIaUUpRoFUvpaBZHQM7o+vwNLDh1fZQoaAZoCWgPQwg4MLlR5GdyQJSGlFKUaBVL1mgWR0DO6QXjp9qldX2UKGgGaAloD0MIBDqTNtVRaUCUhpRSlGgVTegDaBZHQM7pCsHjZL91fZQoaAZoCWgPQwgZjBGJgr1xQJSGlFKUaBVL0mgWR0DO6T3vhIe6dX2UKGgGaAloD0MIk/3zNCA7ckCUhpRSlGgVS+JoFkdAzulRQ3PzF3V9lChoBmgJaA9DCJxNRwA3ZU1AlIaUUpRoFUukaBZHQM7pUW3Sa3J1fZQoaAZoCWgPQwg3qP3WjiRyQJSGlFKUaBVL82gWR0DO6ViTB68hdX2UKGgGaAloD0MIk6gXfBoOcUCUhpRSlGgVS/NoFkdAzulw1fmcOXV9lChoBmgJaA9DCEVI3c6+XHFAlIaUUpRoFUvqaBZHQM7pfHD76551fZQoaAZoCWgPQwgjLCridK1zQJSGlFKUaBVL+GgWR0DO6Yo9Pk7wdX2UKGgGaAloD0MIRYMUPEV8c0CUhpRSlGgVS/BoFkdAzumoLApKBnV9lChoBmgJaA9DCFQ2rKms5m9AlIaUUpRoFUvXaBZHQM7pqU9pyp91fZQoaAZoCWgPQwgCt+7mKeRuQJSGlFKUaBVLzmgWR0DO6baV4X41dX2UKGgGaAloD0MIdqbQeU0EdECUhpRSlGgVS9ZoFkdAzunSmfoRqXV9lChoBmgJaA9DCA1xrItbLnFAlIaUUpRoFUvyaBZHQM7p6FXzUZx1fZQoaAZoCWgPQwhFhH8RNAZxQJSGlFKUaBVL6mgWR0DO6iWVopQUdX2UKGgGaAloD0MIKCfaVUjSbkCUhpRSlGgVS91oFkdAzuoughbGFXV9lChoBmgJaA9DCNF4IojzWXBAlIaUUpRoFUv0aBZHQM7qSDGkvbp1fZQoaAZoCWgPQwgOMV7zqmZxQJSGlFKUaBVL72gWR0DO6kuyAxzrdX2UKGgGaAloD0MI/oAHBpDib0CUhpRSlGgVS/VoFkdAzuptz6JqI3V9lChoBmgJaA9DCNs1Ia3xBXJAlIaUUpRoFUvFaBZHQM7qeTmW+oN1fZQoaAZoCWgPQwgfMA+ZMkRxQJSGlFKUaBVL82gWR0DO6nldAxBWdX2UKGgGaAloD0MI6MHdWfs5cUCUhpRSlGgVS+hoFkdAzup8eo1k2HV9lChoBmgJaA9DCIMT0a/tXXBAlIaUUpRoFUvcaBZHQM7qkADA8CB1fZQoaAZoCWgPQwix3NJqiDxxQJSGlFKUaBVL6GgWR0DO7dF7Y02tdX2UKGgGaAloD0MISYJwBdS1cUCUhpRSlGgVS91oFkdAzu3hf0Eov3V9lChoBmgJaA9DCIJvmj775HBAlIaUUpRoFUvVaBZHQM7t70pVjqh1fZQoaAZoCWgPQwhRFVPpZ55xQJSGlFKUaBVLyWgWR0DO7h71qWTpdX2UKGgGaAloD0MIAMeePRd7bkCUhpRSlGgVS+FoFkdAzu5ECGvfTHV9lChoBmgJaA9DCGwE4nV9Mm5AlIaUUpRoFUvgaBZHQM7uXW43FUB1fZQoaAZoCWgPQwgl5llJ6yRwQJSGlFKUaBVL32gWR0DO7l/L1VYIdX2UKGgGaAloD0MIlkOLbOdzckCUhpRSlGgVS95oFkdAzu6PFYMfBHV9lChoBmgJaA9DCHYZ/tMNnXBAlIaUUpRoFUvjaBZHQM7ukaxHG0h1fZQoaAZoCWgPQwhfCaTELiNwQJSGlFKUaBVL9mgWR0DO7pzFOwgUdX2UKGgGaAloD0MIEJNwIQ+ib0CUhpRSlGgVS+xoFkdAzu6c7OE/S3V9lChoBmgJaA9DCAmp29nX23JAlIaUUpRoFUvdaBZHQM7upEdmxt51fZQoaAZoCWgPQwh+ycaDLdhuQJSGlFKUaBVL2mgWR0DO7s65byH3dX2UKGgGaAloD0MICklm9Q6eckCUhpRSlGgVS/NoFkdAzu7YyQgcLnV9lChoBmgJaA9DCA8O9ibGOXJAlIaUUpRoFUvcaBZHQM7u4CHIp6R1fZQoaAZoCWgPQwjFceDVcjRxQJSGlFKUaBVLw2gWR0DO7vcK/mDEdX2UKGgGaAloD0MIbCV0l8ThU0CUhpRSlGgVS8NoFkdAzu82R7qptXV9lChoBmgJaA9DCB8sY0P3YHBAlIaUUpRoFUvxaBZHQM7vUG6XjVB1fZQoaAZoCWgPQwhAbOnR1BVlQJSGlFKUaBVN6ANoFkdAzu9ZZyMkyHV9lChoBmgJaA9DCIzZklVRCXBAlIaUUpRoFUvkaBZHQM7vWqfnOjZ1fZQoaAZoCWgPQwiqKjQQS8dxQJSGlFKUaBVLy2gWR0DO727MRpUQdX2UKGgGaAloD0MIz9kCQquNc0CUhpRSlGgVS8doFkdAzu92CMglnnV9lChoBmgJaA9DCDwTmiRWrXBAlIaUUpRoFUvYaBZHQM7vhxRl6JJ1fZQoaAZoCWgPQwgGgCpuXBRzQJSGlFKUaBVL8WgWR0DO75gREnb7dX2UKGgGaAloD0MIq3r5naaQc0CUhpRSlGgVS+JoFkdAzu+ZNSIgvHV9lChoBmgJaA9DCMYy/RLx211AlIaUUpRoFU3oA2gWR0DO762Vkc0cdX2UKGgGaAloD0MI3V1nQ/7QZkCUhpRSlGgVTegDaBZHQM7vtJEx7At1fZQoaAZoCWgPQwiIS447ZR5wQJSGlFKUaBVL0mgWR0DO779hPTG6dX2UKGgGaAloD0MIHt0Ii4pMbkCUhpRSlGgVS+5oFkdAzu/Iu+RHPXV9lChoBmgJaA9DCFkw8UfRz2NAlIaUUpRoFU3oA2gWR0DO79EUZeiSdX2UKGgGaAloD0MInGuYoTFKckCUhpRSlGgVS/hoFkdAzu/WPUaybHV9lChoBmgJaA9DCIrkK4HUkHFAlIaUUpRoFUvpaBZHQM7v3wKBuoB1fZQoaAZoCWgPQwjdCfZfZxJzQJSGlFKUaBVLzWgWR0DO8AE1fmcOdX2UKGgGaAloD0MIVUs6yoFIdECUhpRSlGgVS+doFkdAzvAESs8xK3V9lChoBmgJaA9DCEvoLolzT3JAlIaUUpRoFUvXaBZHQM7wDkn9ehR1fZQoaAZoCWgPQwifd2NBIdtwQJSGlFKUaBVL1mgWR0DO8ByJGe+VdX2UKGgGaAloD0MI14nL8Uq8cUCUhpRSlGgVS/9oFkdAzvAtG5tm+XV9lChoBmgJaA9DCCIa3UFs7XFAlIaUUpRoFUvnaBZHQM7wL3jU/fR1fZQoaAZoCWgPQwiLprOTgUNyQJSGlFKUaBVL12gWR0DO8DA8p1A8dX2UKGgGaAloD0MIUil2NE4ocECUhpRSlGgVS81oFkdAzvA08SwnpnV9lChoBmgJaA9DCGQGKuPfSXJAlIaUUpRoFUvzaBZHQM7wT08NhE11fZQoaAZoCWgPQwg4MSQn0ydzQJSGlFKUaBVL+2gWR0DO8GwjY7JXdX2UKGgGaAloD0MIXFg33t2ickCUhpRSlGgVS+9oFkdAzvBtILgGbHV9lChoBmgJaA9DCLzP8dFiYG9AlIaUUpRoFUvZaBZHQM7wbgXEZR91fZQoaAZoCWgPQwioAYOkz1lvQJSGlFKUaBVL5GgWR0DO8HyS7oStdX2UKGgGaAloD0MIqJAr9WzycUCUhpRSlGgVS/poFkdAzvB+/C66KHV9lChoBmgJaA9DCMS0b+7vAnFAlIaUUpRoFUvZaBZHQM7wfw5/9YR1fZQoaAZoCWgPQwibVDTW/tVxQJSGlFKUaBVNGwFoFkdAzvB/9hJAdHV9lChoBmgJaA9DCBY1mIYhb3FAlIaUUpRoFUvdaBZHQM7wpLqUu+R1fZQoaAZoCWgPQwgEkUWaeAtxQJSGlFKUaBVL62gWR0DO8LIiRnvldX2UKGgGaAloD0MIKjdRS/PEbUCUhpRSlGgVS99oFkdAzvCzxZuAJHV9lChoBmgJaA9DCAL1ZtR8/XBAlIaUUpRoFUvhaBZHQM7w1opYs/Z1fZQoaAZoCWgPQwhrDDohNAZzQJSGlFKUaBVL5mgWR0DO8N7hR64UdX2UKGgGaAloD0MImRBzSVVebkCUhpRSlGgVS+NoFkdAzvDismv4d3V9lChoBmgJaA9DCGwhyEEJ9nJAlIaUUpRoFU0DAWgWR0DO8PiaVlf7dX2UKGgGaAloD0MIgXaHFANCcECUhpRSlGgVS9ZoFkdAzvD4rhisn3V9lChoBmgJaA9DCCe8BKf+n3JAlIaUUpRoFUvGaBZHQM7xCblijL11fZQoaAZoCWgPQwii7Zi6KzhyQJSGlFKUaBVL3WgWR0DO8Rz5ZbIMdX2UKGgGaAloD0MI5wDBHP2HcECUhpRSlGgVS8xoFkdAzvEgjOcDsHV9lChoBmgJaA9DCICBIEDGXHFAlIaUUpRoFUvkaBZHQM7xJKpkwvh1fZQoaAZoCWgPQwivXG+bKQhxQJSGlFKUaBVL1GgWR0DO8SpJyyUtdX2UKGgGaAloD0MIIv/MIL5cc0CUhpRSlGgVS+FoFkdAzvE0bz9S/HV9lChoBmgJaA9DCD+QvHNoE3JAlIaUUpRoFUvpaBZHQM7xOgIppex1fZQoaAZoCWgPQwg+r3jqkWFzQJSGlFKUaBVLzGgWR0DO8V0+otL+dX2UKGgGaAloD0MISfJc34fTb0CUhpRSlGgVS+JoFkdAzvFfFHavinVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 495,
79
+ "n_steps": 1024,
80
+ "gamma": 0.9967085012629601,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 5,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
PPO-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ad069fe9f1c8de5c7c4fb0fdab766452ac01b067061514c6ae4ea8756ee163e
3
+ size 87865
PPO-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c1ec18dd87ca844a6b90202b9c7fb9801846df6b1a8d76dc73589ec509777ea
3
+ size 43201
PPO-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.14
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 272.92 +/- 19.82
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f77dbb495f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f77dbb49680>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f77dbb49710>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f77dbb497a0>", "_build": "<function ActorCriticPolicy._build at 0x7f77dbb49830>", "forward": "<function ActorCriticPolicy.forward at 0x7f77dbb498c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f77dbb49950>", "_predict": "<function ActorCriticPolicy._predict at 0x7f77dbb499e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f77dbb49a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f77dbb49b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f77dbb49b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f77dbb8acf0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1622016, "_total_timesteps": 1608249, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1665512720934769636, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAJkEjvnbfPz+KH1e9tqTZvq7FEb5GEdo9AAAAAAAAAAAAxIa7KaxDusaCIr2xOjQzfhUvuwZvabMAAIA/AAAAAJphDL0D4g89AWavPSvdWr5/2jS5UZSFPQAAAAAAAAAATQsKPaJvrj9S/cc+rbS4vul1yTuOoQo+AAAAAAAAAADNj4y8Jvw5Px1Iiz2Z3OC+Eh2UPOIQSTwAAAAAAAAAADMbJjzzJa4/wNETPjU84b6zHz48w6wEPgAAAAAAAAAAzd39PcWepj5rCfG9N0+7vkmeXD0NImW9AAAAAAAAAADNZq88MTYZPrG5xD6P8cG+lx6BPjkquDwAAAAAAAAAAM2f571lvHc/6B0wvmVhA79WFBC+ptjlvAAAAAAAAAAA5o8UvSY/DD+SUHm8DP/bvm01mrw+IDs7AAAAAAAAAAAAfxY97Bn9uZIkLTeJAt+x3/LfuxrvSrYAAIA/AACAP01RFj0b+Sw/q6bpvO1H6b4Odf08QkrhPAAAAAAAAAAAZo7cvHYkF7zNlNY9bvDpvT+Dfb11/h+/AACAPwAAgD8NUGM+A8bMPm1ZI77SxNi+zFcMPoqPDb4AAAAAAAAAANoAwb0xt5o+NrFMPmB6sr5RW5U9VgeyOQAAAAAAAAAAALZpvE+WGrxXpAm+WyyEvhmmtTuTg3k/AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.008560241604378405, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVJRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINPeQ8D15b0CUhpRSlIwBbJRL14wBdJRHQM7oZOclPad1fZQoaAZoCWgPQwifH0YIj3ZxQJSGlFKUaBVNCAFoFkdAzuhserdWQ3V9lChoBmgJaA9DCB9q2zDKbXBAlIaUUpRoFUvRaBZHQM7ocLbg0j11fZQoaAZoCWgPQwjZ0TjUL9lxQJSGlFKUaBVL9mgWR0DO6HohOgxrdX2UKGgGaAloD0MIRIoBEs0AbUCUhpRSlGgVS9RoFkdAzuiBoaDPGHV9lChoBmgJaA9DCNP4hVdSvnFAlIaUUpRoFUv6aBZHQM7onI4EOiF1fZQoaAZoCWgPQwjCFrt9VlpyQJSGlFKUaBVL5WgWR0DO6J0MG5c1dX2UKGgGaAloD0MIldbfEgDHcECUhpRSlGgVS/BoFkdAzuinvMr3CnV9lChoBmgJaA9DCITZBBgW6G9AlIaUUpRoFUvlaBZHQM7ouiwr1/V1fZQoaAZoCWgPQwhBmxw+acJvQJSGlFKUaBVLzWgWR0DO6MrBO58SdX2UKGgGaAloD0MIrDjVWlhTcUCUhpRSlGgVS9ZoFkdAzujpF6RhdHV9lChoBmgJaA9DCDTZP08D03FAlIaUUpRoFUvpaBZHQM7o+vwNLDh1fZQoaAZoCWgPQwg4MLlR5GdyQJSGlFKUaBVL1mgWR0DO6QXjp9qldX2UKGgGaAloD0MIBDqTNtVRaUCUhpRSlGgVTegDaBZHQM7pCsHjZL91fZQoaAZoCWgPQwgZjBGJgr1xQJSGlFKUaBVL0mgWR0DO6T3vhIe6dX2UKGgGaAloD0MIk/3zNCA7ckCUhpRSlGgVS+JoFkdAzulRQ3PzF3V9lChoBmgJaA9DCJxNRwA3ZU1AlIaUUpRoFUukaBZHQM7pUW3Sa3J1fZQoaAZoCWgPQwg3qP3WjiRyQJSGlFKUaBVL82gWR0DO6ViTB68hdX2UKGgGaAloD0MIk6gXfBoOcUCUhpRSlGgVS/NoFkdAzulw1fmcOXV9lChoBmgJaA9DCEVI3c6+XHFAlIaUUpRoFUvqaBZHQM7pfHD76551fZQoaAZoCWgPQwgjLCridK1zQJSGlFKUaBVL+GgWR0DO6Yo9Pk7wdX2UKGgGaAloD0MIRYMUPEV8c0CUhpRSlGgVS/BoFkdAzumoLApKBnV9lChoBmgJaA9DCFQ2rKms5m9AlIaUUpRoFUvXaBZHQM7pqU9pyp91fZQoaAZoCWgPQwgCt+7mKeRuQJSGlFKUaBVLzmgWR0DO6baV4X41dX2UKGgGaAloD0MIdqbQeU0EdECUhpRSlGgVS9ZoFkdAzunSmfoRqXV9lChoBmgJaA9DCA1xrItbLnFAlIaUUpRoFUvyaBZHQM7p6FXzUZx1fZQoaAZoCWgPQwhFhH8RNAZxQJSGlFKUaBVL6mgWR0DO6iWVopQUdX2UKGgGaAloD0MIKCfaVUjSbkCUhpRSlGgVS91oFkdAzuoughbGFXV9lChoBmgJaA9DCNF4IojzWXBAlIaUUpRoFUv0aBZHQM7qSDGkvbp1fZQoaAZoCWgPQwgOMV7zqmZxQJSGlFKUaBVL72gWR0DO6kuyAxzrdX2UKGgGaAloD0MI/oAHBpDib0CUhpRSlGgVS/VoFkdAzuptz6JqI3V9lChoBmgJaA9DCNs1Ia3xBXJAlIaUUpRoFUvFaBZHQM7qeTmW+oN1fZQoaAZoCWgPQwgfMA+ZMkRxQJSGlFKUaBVL82gWR0DO6nldAxBWdX2UKGgGaAloD0MI6MHdWfs5cUCUhpRSlGgVS+hoFkdAzup8eo1k2HV9lChoBmgJaA9DCIMT0a/tXXBAlIaUUpRoFUvcaBZHQM7qkADA8CB1fZQoaAZoCWgPQwix3NJqiDxxQJSGlFKUaBVL6GgWR0DO7dF7Y02tdX2UKGgGaAloD0MISYJwBdS1cUCUhpRSlGgVS91oFkdAzu3hf0Eov3V9lChoBmgJaA9DCIJvmj775HBAlIaUUpRoFUvVaBZHQM7t70pVjqh1fZQoaAZoCWgPQwhRFVPpZ55xQJSGlFKUaBVLyWgWR0DO7h71qWTpdX2UKGgGaAloD0MIAMeePRd7bkCUhpRSlGgVS+FoFkdAzu5ECGvfTHV9lChoBmgJaA9DCGwE4nV9Mm5AlIaUUpRoFUvgaBZHQM7uXW43FUB1fZQoaAZoCWgPQwgl5llJ6yRwQJSGlFKUaBVL32gWR0DO7l/L1VYIdX2UKGgGaAloD0MIlkOLbOdzckCUhpRSlGgVS95oFkdAzu6PFYMfBHV9lChoBmgJaA9DCHYZ/tMNnXBAlIaUUpRoFUvjaBZHQM7ukaxHG0h1fZQoaAZoCWgPQwhfCaTELiNwQJSGlFKUaBVL9mgWR0DO7pzFOwgUdX2UKGgGaAloD0MIEJNwIQ+ib0CUhpRSlGgVS+xoFkdAzu6c7OE/S3V9lChoBmgJaA9DCAmp29nX23JAlIaUUpRoFUvdaBZHQM7upEdmxt51fZQoaAZoCWgPQwh+ycaDLdhuQJSGlFKUaBVL2mgWR0DO7s65byH3dX2UKGgGaAloD0MICklm9Q6eckCUhpRSlGgVS/NoFkdAzu7YyQgcLnV9lChoBmgJaA9DCA8O9ibGOXJAlIaUUpRoFUvcaBZHQM7u4CHIp6R1fZQoaAZoCWgPQwjFceDVcjRxQJSGlFKUaBVLw2gWR0DO7vcK/mDEdX2UKGgGaAloD0MIbCV0l8ThU0CUhpRSlGgVS8NoFkdAzu82R7qptXV9lChoBmgJaA9DCB8sY0P3YHBAlIaUUpRoFUvxaBZHQM7vUG6XjVB1fZQoaAZoCWgPQwhAbOnR1BVlQJSGlFKUaBVN6ANoFkdAzu9ZZyMkyHV9lChoBmgJaA9DCIzZklVRCXBAlIaUUpRoFUvkaBZHQM7vWqfnOjZ1fZQoaAZoCWgPQwiqKjQQS8dxQJSGlFKUaBVLy2gWR0DO727MRpUQdX2UKGgGaAloD0MIz9kCQquNc0CUhpRSlGgVS8doFkdAzu92CMglnnV9lChoBmgJaA9DCDwTmiRWrXBAlIaUUpRoFUvYaBZHQM7vhxRl6JJ1fZQoaAZoCWgPQwgGgCpuXBRzQJSGlFKUaBVL8WgWR0DO75gREnb7dX2UKGgGaAloD0MIq3r5naaQc0CUhpRSlGgVS+JoFkdAzu+ZNSIgvHV9lChoBmgJaA9DCMYy/RLx211AlIaUUpRoFU3oA2gWR0DO762Vkc0cdX2UKGgGaAloD0MI3V1nQ/7QZkCUhpRSlGgVTegDaBZHQM7vtJEx7At1fZQoaAZoCWgPQwiIS447ZR5wQJSGlFKUaBVL0mgWR0DO779hPTG6dX2UKGgGaAloD0MIHt0Ii4pMbkCUhpRSlGgVS+5oFkdAzu/Iu+RHPXV9lChoBmgJaA9DCFkw8UfRz2NAlIaUUpRoFU3oA2gWR0DO79EUZeiSdX2UKGgGaAloD0MInGuYoTFKckCUhpRSlGgVS/hoFkdAzu/WPUaybHV9lChoBmgJaA9DCIrkK4HUkHFAlIaUUpRoFUvpaBZHQM7v3wKBuoB1fZQoaAZoCWgPQwjdCfZfZxJzQJSGlFKUaBVLzWgWR0DO8AE1fmcOdX2UKGgGaAloD0MIVUs6yoFIdECUhpRSlGgVS+doFkdAzvAESs8xK3V9lChoBmgJaA9DCEvoLolzT3JAlIaUUpRoFUvXaBZHQM7wDkn9ehR1fZQoaAZoCWgPQwifd2NBIdtwQJSGlFKUaBVL1mgWR0DO8ByJGe+VdX2UKGgGaAloD0MI14nL8Uq8cUCUhpRSlGgVS/9oFkdAzvAtG5tm+XV9lChoBmgJaA9DCCIa3UFs7XFAlIaUUpRoFUvnaBZHQM7wL3jU/fR1fZQoaAZoCWgPQwiLprOTgUNyQJSGlFKUaBVL12gWR0DO8DA8p1A8dX2UKGgGaAloD0MIUil2NE4ocECUhpRSlGgVS81oFkdAzvA08SwnpnV9lChoBmgJaA9DCGQGKuPfSXJAlIaUUpRoFUvzaBZHQM7wT08NhE11fZQoaAZoCWgPQwg4MSQn0ydzQJSGlFKUaBVL+2gWR0DO8GwjY7JXdX2UKGgGaAloD0MIXFg33t2ickCUhpRSlGgVS+9oFkdAzvBtILgGbHV9lChoBmgJaA9DCLzP8dFiYG9AlIaUUpRoFUvZaBZHQM7wbgXEZR91fZQoaAZoCWgPQwioAYOkz1lvQJSGlFKUaBVL5GgWR0DO8HyS7oStdX2UKGgGaAloD0MIqJAr9WzycUCUhpRSlGgVS/poFkdAzvB+/C66KHV9lChoBmgJaA9DCMS0b+7vAnFAlIaUUpRoFUvZaBZHQM7wfw5/9YR1fZQoaAZoCWgPQwibVDTW/tVxQJSGlFKUaBVNGwFoFkdAzvB/9hJAdHV9lChoBmgJaA9DCBY1mIYhb3FAlIaUUpRoFUvdaBZHQM7wpLqUu+R1fZQoaAZoCWgPQwgEkUWaeAtxQJSGlFKUaBVL62gWR0DO8LIiRnvldX2UKGgGaAloD0MIKjdRS/PEbUCUhpRSlGgVS99oFkdAzvCzxZuAJHV9lChoBmgJaA9DCAL1ZtR8/XBAlIaUUpRoFUvhaBZHQM7w1opYs/Z1fZQoaAZoCWgPQwhrDDohNAZzQJSGlFKUaBVL5mgWR0DO8N7hR64UdX2UKGgGaAloD0MImRBzSVVebkCUhpRSlGgVS+NoFkdAzvDismv4d3V9lChoBmgJaA9DCGwhyEEJ9nJAlIaUUpRoFU0DAWgWR0DO8PiaVlf7dX2UKGgGaAloD0MIgXaHFANCcECUhpRSlGgVS9ZoFkdAzvD4rhisn3V9lChoBmgJaA9DCCe8BKf+n3JAlIaUUpRoFUvGaBZHQM7xCblijL11fZQoaAZoCWgPQwii7Zi6KzhyQJSGlFKUaBVL3WgWR0DO8Rz5ZbIMdX2UKGgGaAloD0MI5wDBHP2HcECUhpRSlGgVS8xoFkdAzvEgjOcDsHV9lChoBmgJaA9DCICBIEDGXHFAlIaUUpRoFUvkaBZHQM7xJKpkwvh1fZQoaAZoCWgPQwivXG+bKQhxQJSGlFKUaBVL1GgWR0DO8SpJyyUtdX2UKGgGaAloD0MIIv/MIL5cc0CUhpRSlGgVS+FoFkdAzvE0bz9S/HV9lChoBmgJaA9DCD+QvHNoE3JAlIaUUpRoFUvpaBZHQM7xOgIppex1fZQoaAZoCWgPQwg+r3jqkWFzQJSGlFKUaBVLzGgWR0DO8V0+otL+dX2UKGgGaAloD0MISfJc34fTb0CUhpRSlGgVS+JoFkdAzvFfFHavinVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 495, "n_steps": 1024, "gamma": 0.9967085012629601, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 5, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.14", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (219 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 272.92290845680617, "std_reward": 19.82177948828792, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-11T19:00:17.038661"}