Initial commit
Browse files- .gitattributes +1 -0
- README.md +36 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +105 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -30,3 +30,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
30 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
31 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
32 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
30 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
31 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
32 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
33 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 1841.53 +/- 199.08
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: AntBulletEnv-v0
|
20 |
+
type: AntBulletEnv-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
24 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
25 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
26 |
+
|
27 |
+
## Usage (with Stable-baselines3)
|
28 |
+
TODO: Add your code
|
29 |
+
|
30 |
+
|
31 |
+
```python
|
32 |
+
from stable_baselines3 import ...
|
33 |
+
from huggingface_sb3 import load_from_hub
|
34 |
+
|
35 |
+
...
|
36 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7781139f01bd0e613c4704557a2785aad28079701ca4d277b971bd64f572b682
|
3 |
+
size 129195
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff3ad8f77a0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff3ad8f7830>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff3ad8f78c0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff3ad8f7950>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff3ad8f79e0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff3ad8f7a70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff3ad8f7b00>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff3ad8f7b90>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff3ad8f7c20>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff3ad8f7cb0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff3ad8f7d40>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7ff3ad9439c0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
":type:": "<class 'dict'>",
|
24 |
+
":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
25 |
+
"log_std_init": -2,
|
26 |
+
"ortho_init": false,
|
27 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
28 |
+
"optimizer_kwargs": {
|
29 |
+
"alpha": 0.99,
|
30 |
+
"eps": 1e-05,
|
31 |
+
"weight_decay": 0
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"observation_space": {
|
35 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
36 |
+
":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=",
|
37 |
+
"dtype": "float32",
|
38 |
+
"_shape": [
|
39 |
+
28
|
40 |
+
],
|
41 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
42 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
43 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
44 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"action_space": {
|
48 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
49 |
+
":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu",
|
50 |
+
"dtype": "float32",
|
51 |
+
"_shape": [
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
55 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
56 |
+
"bounded_below": "[ True True True True True True True True]",
|
57 |
+
"bounded_above": "[ True True True True True True True True]",
|
58 |
+
"_np_random": null
|
59 |
+
},
|
60 |
+
"n_envs": 4,
|
61 |
+
"num_timesteps": 2000000,
|
62 |
+
"_total_timesteps": 2000000,
|
63 |
+
"_num_timesteps_at_start": 0,
|
64 |
+
"seed": null,
|
65 |
+
"action_noise": null,
|
66 |
+
"start_time": 1665675830190635957,
|
67 |
+
"learning_rate": 0.00096,
|
68 |
+
"tensorboard_log": "./tensorboard",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
72 |
+
},
|
73 |
+
"_last_obs": {
|
74 |
+
":type:": "<class 'numpy.ndarray'>",
|
75 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAqXeNP/AjTT9DdKC+S8QiP+lcwD9vKp4/fE7WP1qELD2GkQA/cfOrv0jBTD9CVSnA99veP8rSw7wfg/m/NeLTPrCXkb7U98O/mymgPnPEt7/WpSc/tBuWv8h6sj5+laI+BY1uv4mhEz+cDo4+cmsgPw+7Gj6VKo29fBQUP50bPj8xUgI9XoBAwI32Db7QN9g+pU2iPoLGZj7tquk+Pfz/PwUfgT48iifAVGSMvhiHrT9sV0U/7aXKv4Fo5b55oUTABUHmPtO1G0A4SG29LVkMvwWNbr+JoRM/nA6OPqFDzL+FuPI+Lhj8PYcb5j6VbgQ/O/jHP7uCxT/iLoA/INrrPE9Ohj9ANg6/CwrtP2wUVb8bgLg+XyuSP9qsnr+Xp1y+JFTpPa46mL5/NQQ/N+ELv2ejAz9UBz2/UgCAPdk6ZT0FjW6/iaETP5wOjj5yayA/BPWuPwEd1T4bZT8+KzDLP5+u3D9Bqq8/iFtAP52Tlr/j12Q/J6vcvgu+wT/6psK/VNLBPne2mT/X1oC/59u9PiVbOD5jN6Q+Xa8GP2s6wzw9GIm/JLqRv4RNhz95mRK/BY1uv4mhEz+cDo4+cmsgP5R0lGIu"
|
76 |
+
},
|
77 |
+
"_last_episode_starts": {
|
78 |
+
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="
|
80 |
+
},
|
81 |
+
"_last_original_obs": {
|
82 |
+
":type:": "<class 'numpy.ndarray'>",
|
83 |
+
":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAADOG8DQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDZwyy9AAAAAAPy3r8AAAAAVrfHPQAAAAAEQvM/AAAAACRo070AAAAAuJTePwAAAABKX4Y8AAAAABkN/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE6kg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAh47zvQAAAABj3t6/AAAAAETh4D0AAAAARVzkPwAAAABla3Y8AAAAAPPK6T8AAAAAFU/2PQAAAADyn+6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASSWINgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgO6Dir0AAAAAvvTevwAAAACNyoW8AAAAAJTd6D8AAAAAIvWmPQAAAAAcTPE/AAAAADA5NL0AAAAAFVIBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOc36TQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIASCBm9AAAAAFRh978AAAAAD372PQAAAACLGto/AAAAAEzy7L0AAAAAnr/pPwAAAAAtW9Q8AAAAAA668L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"
|
84 |
+
},
|
85 |
+
"_episode_num": 0,
|
86 |
+
"use_sde": true,
|
87 |
+
"sde_sample_freq": -1,
|
88 |
+
"_current_progress_remaining": 0.0,
|
89 |
+
"ep_info_buffer": {
|
90 |
+
":type:": "<class 'collections.deque'>",
|
91 |
+
":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ4OeQU5+6SMAWyUTegDjAF0lEdAqXdJKL8763V9lChoBkdAnj67Xcxj8WgHTegDaAhHQKl4yGbCrLh1fZQoaAZHQJ5HYj8k2P1oB03oA2gIR0CpetFN+LFXdX2UKGgGR0CgPAPM8ox6aAdN6ANoCEdAqX9wr1/UfHV9lChoBkdAnt8+/5+H8GgHTegDaAhHQKmElx6OYIB1fZQoaAZHQJ5nCV7hNudoB03oA2gIR0CphgSAhB7edX2UKGgGR0Cbzj7kn1FpaAdN6ANoCEdAqYft0xM363V9lChoBkdAnCU8PFvQ4WgHTegDaAhHQKmMi3VCojx1fZQoaAZHQJvtlYOlO45oB03oA2gIR0CpkcI7/4qPdX2UKGgGR0CdoNNVinYQaAdN6ANoCEdAqZMn2wmmcnV9lChoBkdAnaQ6SDAaemgHTegDaAhHQKmVKPaL4vh1fZQoaAZHQJ6lgXEZR9BoB03oA2gIR0Cpmcb+Lm6odX2UKGgGR0CeU8Et/WlNaAdN6ANoCEdAqZ767f51vHV9lChoBkdAnt2m2oegc2gHTegDaAhHQKmgW7r9l3B1fZQoaAZHQJ3qx3OfNA1oB03oA2gIR0CpolG8274BdX2UKGgGR0Cb9WCm/FisaAdN6ANoCEdAqab15OafBnV9lChoBkdAn+2XTuv2XmgHTegDaAhHQKmsP4cm0E51fZQoaAZHQJyV/f/FR51oB03oA2gIR0CpraLv1DjSdX2UKGgGR0CfkwRoysS1aAdN6ANoCEdAqa+Zb+tKZnV9lChoBkdAmo/NyDIzWWgHTegDaAhHQKm0Rsxfv4N1fZQoaAZHQJ0g7w2ETQFoB03oA2gIR0CpuYG34Kx+dX2UKGgGR0CcuOGVzIV/aAdN6ANoCEdAqbrm/etSynV9lChoBkdAm/Z0LMLWqmgHTegDaAhHQKm82l7+kxh1fZQoaAZHQJz4JLBbfP5oB03oA2gIR0CpwX9YwIt2dX2UKGgGR0CcJqyM1jy4aAdN6ANoCEdAqcbNvjwQUnV9lChoBkdAm2O23vx6OmgHTegDaAhHQKnIMNd7fHh1fZQoaAZHQJ/ba3pfQa9oB03oA2gIR0CpyiktNBWxdX2UKGgGR0CfaM9ycTakaAdN6ANoCEdAqc7sALiMpHV9lChoBkdAnEdy1/lQuWgHTegDaAhHQKnUE3kPtlZ1fZQoaAZHQJvaENb1RLtoB03oA2gIR0Cp1XJd0JWvdX2UKGgGR0CgDK/NiYsvaAdN6ANoCEdAqdd45HVf/nV9lChoBkdAnH0TshPj42gHTegDaAhHQKncGWFev6l1fZQoaAZHQJ/4dVYISlFoB03oA2gIR0Cp4UXgccU/dX2UKGgGR0Cc0w2fkFOgaAdN6ANoCEdAqeKkYXO4X3V9lChoBkdAm4wKkyk9EGgHTegDaAhHQKnkms2eg+R1fZQoaAZHQJuCWNZNfw9oB03oA2gIR0Cp6TmNzbN9dX2UKGgGR0Caka371qWUaAdN6ANoCEdAqe59ivxH5XV9lChoBkdAm1vhtHhCMWgHTegDaAhHQKnv+W8AaNx1fZQoaAZHQJtkU6bONYNoB03oA2gIR0Cp8g5OzposdX2UKGgGR0CaHT6aLGaQaAdN6ANoCEdAqfbIyhzvJHV9lChoBkdAlm9QOWjXWmgHTegDaAhHQKn75f4yoGZ1fZQoaAZHQJ4LMlnh86VoB03oA2gIR0Cp/Uk3CKrJdX2UKGgGR0CZ2DKPn0TUaAdN6ANoCEdAqf81w71ZknV9lChoBkdAm5oNBWxQi2gHTegDaAhHQKoD7w1ivxJ1fZQoaAZHQJ3HNJ8OTaFoB03oA2gIR0CqCSXK0UoKdX2UKGgGR0CfD25paiblaAdN6ANoCEdAqgqPXCj1w3V9lChoBkdAns5C6QNkOWgHTegDaAhHQKoMh+NLlFN1fZQoaAZHQJ0shOsT37FoB03oA2gIR0CqET5PM0P6dX2UKGgGR0Ce1dJDmbLEaAdN6ANoCEdAqhZ3hQ3xWnV9lChoBkdAnLS7lzU7S2gHTegDaAhHQKoX2veP7vZ1fZQoaAZHQJv18XvYvnNoB03oA2gIR0CqGc4oZydXdX2UKGgGR0CdHq3rleWwaAdN6ANoCEdAqh6Cv/zasnV9lChoBkdAnNjBK15SnGgHTegDaAhHQKojxTUiILx1fZQoaAZHQJvLO5lOGj9oB03oA2gIR0CqJS89wFTvdX2UKGgGR0CePhSGJvYOaAdN6ANoCEdAqicdGd7OV3V9lChoBkdAm1vu67NB4WgHTegDaAhHQKoruGRmseZ1fZQoaAZHQJvUCgDifg9oB03oA2gIR0CqMNMpG4I9dX2UKGgGR0CcCuye7L+xaAdN6ANoCEdAqjIp1aGHpXV9lChoBkdAnJKgc94eLmgHTegDaAhHQKo0FzV+Zw51fZQoaAZHQJvyv7zkIX1oB03oA2gIR0CqOMPO6d1/dX2UKGgGR0Cem4G5MDfWaAdN6ANoCEdAqj32oFV1fXV9lChoBkdAndWWkadc0WgHTegDaAhHQKo/VeqrBCV1fZQoaAZHQJoK7127nPpoB03oA2gIR0CqQURBu4wzdX2UKGgGR0Ccs39c8kleaAdN6ANoCEdAqkXkfgaWHHV9lChoBkdAm5Uxfa6BiGgHTegDaAhHQKpK/JU5uIh1fZQoaAZHQJrpWQhfShJoB03oA2gIR0CqTFnLRrrPdX2UKGgGR0CcDb9LpRoAaAdN6ANoCEdAqk5HMhX8wnV9lChoBkdAmcUv9xZMc2gHTegDaAhHQKpS3ZdOZb91fZQoaAZHQJwAFouf29NoB03oA2gIR0CqWBCTlkpadX2UKGgGR0CYo203fhuPaAdN6ANoCEdAqllpbMX7+HV9lChoBkdAms3UTYdyUGgHTegDaAhHQKpbSx+KCQN1fZQoaAZHQJtGAGB4D9xoB03oA2gIR0CqX+4Qz1sddX2UKGgGR0CcDmWGyon8aAdN6ANoCEdAqmUQWxhUi3V9lChoBkdAnBTSrtE5Q2gHTegDaAhHQKpmi4FzMid1fZQoaAZHQJtlcMb3oLZoB03oA2gIR0CqaJ8BdUsGdX2UKGgGR0CbnoWJJoTPaAdN6ANoCEdAqm2DziCJ43V9lChoBkdAnBZQH7gsLGgHTegDaAhHQKpyvHSWqtJ1fZQoaAZHQJqZJfhMrVhoB03oA2gIR0CqdCTxgAp8dX2UKGgGR0CZYj41gpjMaAdN6ANoCEdAqnYXgLqlg3V9lChoBkdAmpE0UXYUWWgHTegDaAhHQKp63k078vV1fZQoaAZHQJwQ2KfnOjZoB03oA2gIR0CqgCdadMCcdX2UKGgGR0Ccn8WattALaAdN6ANoCEdAqoGQYNy5qnV9lChoBkdAms5YuXeFc2gHTegDaAhHQKqDgdYnv2J1fZQoaAZHQJiSnuQZGaxoB03oA2gIR0CqiDtrbg0kdX2UKGgGR0CXL34BV+7UaAdN6ANoCEdAqo1uJtSAH3V9lChoBkdAloFlE3KjjGgHTegDaAhHQKqO1YNAkcF1fZQoaAZHQI/mW3rleWxoB03oA2gIR0CqkMiHymQ9dX2UKGgGR0CWiUAS39aVaAdN6ANoCEdAqpVrc/MW43V9lChoBkdAmFkNNnGsFWgHTegDaAhHQKqamAxzq8l1fZQoaAZHQJYFrXd0q6RoB03oA2gIR0CqnABI4EOidX2UKGgGR0CX5wGG21D0aAdN6ANoCEdAqp3oPVd5ZHV9lChoBkdAnC21psXSB2gHTegDaAhHQKqilG2kSEl1fZQoaAZHQJrJFkVeruJoB03oA2gIR0Cqp7+chC+ldX2UKGgGR0Cb+VJzDGcXaAdN6ANoCEdAqqklv60pmXV9lChoBkdAm5elotcv/WgHTegDaAhHQKqrKZb6guh1fZQoaAZHQJoLqZ6Uqx1oB03oA2gIR0Cqr9QRf4RFdX2UKGgGR0CbbQ+yZ8a5aAdN6ANoCEdAqrT7Ck43m3V9lChoBkdAmOOowAU+LWgHTegDaAhHQKq2XV5KODJ1fZQoaAZHQJnlkYBNmDloB03oA2gIR0CquFbxd6cBdX2UKGgGR0CbX71hsqJ/aAdN6ANoCEdAqrzxEH+qBHVlLg=="
|
92 |
+
},
|
93 |
+
"ep_success_buffer": {
|
94 |
+
":type:": "<class 'collections.deque'>",
|
95 |
+
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
96 |
+
},
|
97 |
+
"_n_updates": 62500,
|
98 |
+
"n_steps": 8,
|
99 |
+
"gamma": 0.99,
|
100 |
+
"gae_lambda": 0.9,
|
101 |
+
"ent_coef": 0.0,
|
102 |
+
"vf_coef": 0.4,
|
103 |
+
"max_grad_norm": 0.5,
|
104 |
+
"normalize_advantage": false
|
105 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75fc236fc74e4f054aea0419e051fba51daf253f4ad47049666f3dad1b43754d
|
3 |
+
size 56126
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9ad10c0f0544d7836fafc642b364ed280e0c300c20c4d3d3d3c1d2c46c6d6ccb
|
3 |
+
size 56766
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.7.14
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.12.1+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff3ad8f77a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff3ad8f7830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff3ad8f78c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff3ad8f7950>", "_build": "<function ActorCriticPolicy._build at 0x7ff3ad8f79e0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff3ad8f7a70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff3ad8f7b00>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff3ad8f7b90>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff3ad8f7c20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff3ad8f7cb0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff3ad8f7d40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff3ad9439c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASViwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUschZRoColDcAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxyFlGgKiUNwAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLHIWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUschZRoKolDHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAEBAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAEBAQEBAQEBlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1665675830190635957, "learning_rate": 0.00096, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP091EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAqXeNP/AjTT9DdKC+S8QiP+lcwD9vKp4/fE7WP1qELD2GkQA/cfOrv0jBTD9CVSnA99veP8rSw7wfg/m/NeLTPrCXkb7U98O/mymgPnPEt7/WpSc/tBuWv8h6sj5+laI+BY1uv4mhEz+cDo4+cmsgPw+7Gj6VKo29fBQUP50bPj8xUgI9XoBAwI32Db7QN9g+pU2iPoLGZj7tquk+Pfz/PwUfgT48iifAVGSMvhiHrT9sV0U/7aXKv4Fo5b55oUTABUHmPtO1G0A4SG29LVkMvwWNbr+JoRM/nA6OPqFDzL+FuPI+Lhj8PYcb5j6VbgQ/O/jHP7uCxT/iLoA/INrrPE9Ohj9ANg6/CwrtP2wUVb8bgLg+XyuSP9qsnr+Xp1y+JFTpPa46mL5/NQQ/N+ELv2ejAz9UBz2/UgCAPdk6ZT0FjW6/iaETP5wOjj5yayA/BPWuPwEd1T4bZT8+KzDLP5+u3D9Bqq8/iFtAP52Tlr/j12Q/J6vcvgu+wT/6psK/VNLBPne2mT/X1oC/59u9PiVbOD5jN6Q+Xa8GP2s6wzw9GIm/JLqRv4RNhz95mRK/BY1uv4mhEz+cDo4+cmsgP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVTQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwRLHIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiULAAQAAAAAAADOG8DQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDZwyy9AAAAAAPy3r8AAAAAVrfHPQAAAAAEQvM/AAAAACRo070AAAAAuJTePwAAAABKX4Y8AAAAABkN/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAE6kg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAh47zvQAAAABj3t6/AAAAAETh4D0AAAAARVzkPwAAAABla3Y8AAAAAPPK6T8AAAAAFU/2PQAAAADyn+6/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAASSWINgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgO6Dir0AAAAAvvTevwAAAACNyoW8AAAAAJTd6D8AAAAAIvWmPQAAAAAcTPE/AAAAADA5NL0AAAAAFVIBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOc36TQAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIASCBm9AAAAAFRh978AAAAAD372PQAAAACLGto/AAAAAEzy7L0AAAAAnr/pPwAAAAAtW9Q8AAAAAA668L8AAAAAAAAAAAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ4OeQU5+6SMAWyUTegDjAF0lEdAqXdJKL8763V9lChoBkdAnj67Xcxj8WgHTegDaAhHQKl4yGbCrLh1fZQoaAZHQJ5HYj8k2P1oB03oA2gIR0CpetFN+LFXdX2UKGgGR0CgPAPM8ox6aAdN6ANoCEdAqX9wr1/UfHV9lChoBkdAnt8+/5+H8GgHTegDaAhHQKmElx6OYIB1fZQoaAZHQJ5nCV7hNudoB03oA2gIR0CphgSAhB7edX2UKGgGR0Cbzj7kn1FpaAdN6ANoCEdAqYft0xM363V9lChoBkdAnCU8PFvQ4WgHTegDaAhHQKmMi3VCojx1fZQoaAZHQJvtlYOlO45oB03oA2gIR0CpkcI7/4qPdX2UKGgGR0CdoNNVinYQaAdN6ANoCEdAqZMn2wmmcnV9lChoBkdAnaQ6SDAaemgHTegDaAhHQKmVKPaL4vh1fZQoaAZHQJ6lgXEZR9BoB03oA2gIR0Cpmcb+Lm6odX2UKGgGR0CeU8Et/WlNaAdN6ANoCEdAqZ767f51vHV9lChoBkdAnt2m2oegc2gHTegDaAhHQKmgW7r9l3B1fZQoaAZHQJ3qx3OfNA1oB03oA2gIR0CpolG8274BdX2UKGgGR0Cb9WCm/FisaAdN6ANoCEdAqab15OafBnV9lChoBkdAn+2XTuv2XmgHTegDaAhHQKmsP4cm0E51fZQoaAZHQJyV/f/FR51oB03oA2gIR0CpraLv1DjSdX2UKGgGR0CfkwRoysS1aAdN6ANoCEdAqa+Zb+tKZnV9lChoBkdAmo/NyDIzWWgHTegDaAhHQKm0Rsxfv4N1fZQoaAZHQJ0g7w2ETQFoB03oA2gIR0CpuYG34Kx+dX2UKGgGR0CcuOGVzIV/aAdN6ANoCEdAqbrm/etSynV9lChoBkdAm/Z0LMLWqmgHTegDaAhHQKm82l7+kxh1fZQoaAZHQJz4JLBbfP5oB03oA2gIR0CpwX9YwIt2dX2UKGgGR0CcJqyM1jy4aAdN6ANoCEdAqcbNvjwQUnV9lChoBkdAm2O23vx6OmgHTegDaAhHQKnIMNd7fHh1fZQoaAZHQJ/ba3pfQa9oB03oA2gIR0CpyiktNBWxdX2UKGgGR0CfaM9ycTakaAdN6ANoCEdAqc7sALiMpHV9lChoBkdAnEdy1/lQuWgHTegDaAhHQKnUE3kPtlZ1fZQoaAZHQJvaENb1RLtoB03oA2gIR0Cp1XJd0JWvdX2UKGgGR0CgDK/NiYsvaAdN6ANoCEdAqdd45HVf/nV9lChoBkdAnH0TshPj42gHTegDaAhHQKncGWFev6l1fZQoaAZHQJ/4dVYISlFoB03oA2gIR0Cp4UXgccU/dX2UKGgGR0Cc0w2fkFOgaAdN6ANoCEdAqeKkYXO4X3V9lChoBkdAm4wKkyk9EGgHTegDaAhHQKnkms2eg+R1fZQoaAZHQJuCWNZNfw9oB03oA2gIR0Cp6TmNzbN9dX2UKGgGR0Caka371qWUaAdN6ANoCEdAqe59ivxH5XV9lChoBkdAm1vhtHhCMWgHTegDaAhHQKnv+W8AaNx1fZQoaAZHQJtkU6bONYNoB03oA2gIR0Cp8g5OzposdX2UKGgGR0CaHT6aLGaQaAdN6ANoCEdAqfbIyhzvJHV9lChoBkdAlm9QOWjXWmgHTegDaAhHQKn75f4yoGZ1fZQoaAZHQJ4LMlnh86VoB03oA2gIR0Cp/Uk3CKrJdX2UKGgGR0CZ2DKPn0TUaAdN6ANoCEdAqf81w71ZknV9lChoBkdAm5oNBWxQi2gHTegDaAhHQKoD7w1ivxJ1fZQoaAZHQJ3HNJ8OTaFoB03oA2gIR0CqCSXK0UoKdX2UKGgGR0CfD25paiblaAdN6ANoCEdAqgqPXCj1w3V9lChoBkdAns5C6QNkOWgHTegDaAhHQKoMh+NLlFN1fZQoaAZHQJ0shOsT37FoB03oA2gIR0CqET5PM0P6dX2UKGgGR0Ce1dJDmbLEaAdN6ANoCEdAqhZ3hQ3xWnV9lChoBkdAnLS7lzU7S2gHTegDaAhHQKoX2veP7vZ1fZQoaAZHQJv18XvYvnNoB03oA2gIR0CqGc4oZydXdX2UKGgGR0CdHq3rleWwaAdN6ANoCEdAqh6Cv/zasnV9lChoBkdAnNjBK15SnGgHTegDaAhHQKojxTUiILx1fZQoaAZHQJvLO5lOGj9oB03oA2gIR0CqJS89wFTvdX2UKGgGR0CePhSGJvYOaAdN6ANoCEdAqicdGd7OV3V9lChoBkdAm1vu67NB4WgHTegDaAhHQKoruGRmseZ1fZQoaAZHQJvUCgDifg9oB03oA2gIR0CqMNMpG4I9dX2UKGgGR0CcCuye7L+xaAdN6ANoCEdAqjIp1aGHpXV9lChoBkdAnJKgc94eLmgHTegDaAhHQKo0FzV+Zw51fZQoaAZHQJvyv7zkIX1oB03oA2gIR0CqOMPO6d1/dX2UKGgGR0Cem4G5MDfWaAdN6ANoCEdAqj32oFV1fXV9lChoBkdAndWWkadc0WgHTegDaAhHQKo/VeqrBCV1fZQoaAZHQJoK7127nPpoB03oA2gIR0CqQURBu4wzdX2UKGgGR0Ccs39c8kleaAdN6ANoCEdAqkXkfgaWHHV9lChoBkdAm5Uxfa6BiGgHTegDaAhHQKpK/JU5uIh1fZQoaAZHQJrpWQhfShJoB03oA2gIR0CqTFnLRrrPdX2UKGgGR0CcDb9LpRoAaAdN6ANoCEdAqk5HMhX8wnV9lChoBkdAmcUv9xZMc2gHTegDaAhHQKpS3ZdOZb91fZQoaAZHQJwAFouf29NoB03oA2gIR0CqWBCTlkpadX2UKGgGR0CYo203fhuPaAdN6ANoCEdAqllpbMX7+HV9lChoBkdAms3UTYdyUGgHTegDaAhHQKpbSx+KCQN1fZQoaAZHQJtGAGB4D9xoB03oA2gIR0CqX+4Qz1sddX2UKGgGR0CcDmWGyon8aAdN6ANoCEdAqmUQWxhUi3V9lChoBkdAnBTSrtE5Q2gHTegDaAhHQKpmi4FzMid1fZQoaAZHQJtlcMb3oLZoB03oA2gIR0CqaJ8BdUsGdX2UKGgGR0CbnoWJJoTPaAdN6ANoCEdAqm2DziCJ43V9lChoBkdAnBZQH7gsLGgHTegDaAhHQKpyvHSWqtJ1fZQoaAZHQJqZJfhMrVhoB03oA2gIR0CqdCTxgAp8dX2UKGgGR0CZYj41gpjMaAdN6ANoCEdAqnYXgLqlg3V9lChoBkdAmpE0UXYUWWgHTegDaAhHQKp63k078vV1fZQoaAZHQJwQ2KfnOjZoB03oA2gIR0CqgCdadMCcdX2UKGgGR0Ccn8WattALaAdN6ANoCEdAqoGQYNy5qnV9lChoBkdAms5YuXeFc2gHTegDaAhHQKqDgdYnv2J1fZQoaAZHQJiSnuQZGaxoB03oA2gIR0CqiDtrbg0kdX2UKGgGR0CXL34BV+7UaAdN6ANoCEdAqo1uJtSAH3V9lChoBkdAloFlE3KjjGgHTegDaAhHQKqO1YNAkcF1fZQoaAZHQI/mW3rleWxoB03oA2gIR0CqkMiHymQ9dX2UKGgGR0CWiUAS39aVaAdN6ANoCEdAqpVrc/MW43V9lChoBkdAmFkNNnGsFWgHTegDaAhHQKqamAxzq8l1fZQoaAZHQJYFrXd0q6RoB03oA2gIR0CqnABI4EOidX2UKGgGR0CX5wGG21D0aAdN6ANoCEdAqp3oPVd5ZHV9lChoBkdAnC21psXSB2gHTegDaAhHQKqilG2kSEl1fZQoaAZHQJrJFkVeruJoB03oA2gIR0Cqp7+chC+ldX2UKGgGR0Cb+VJzDGcXaAdN6ANoCEdAqqklv60pmXV9lChoBkdAm5elotcv/WgHTegDaAhHQKqrKZb6guh1fZQoaAZHQJoLqZ6Uqx1oB03oA2gIR0Cqr9QRf4RFdX2UKGgGR0CbbQ+yZ8a5aAdN6ANoCEdAqrT7Ck43m3V9lChoBkdAmOOowAU+LWgHTegDaAhHQKq2XV5KODJ1fZQoaAZHQJnlkYBNmDloB03oA2gIR0CquFbxd6cBdX2UKGgGR0CbX71hsqJ/aAdN6ANoCEdAqrzxEH+qBHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.14", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f9eef5de8a12e1afb60ac18904c7dc7aa0356662a680e314c496809612dd36a
|
3 |
+
size 1207878
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1841.5296898244414, "std_reward": 199.07961723148006, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-13T16:44:48.021807"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13e59e9560300f589d6d9f0b7123517cb2921f9f8e38e2329c575d263216c992
|
3 |
+
size 2763
|