Jacob12345 commited on
Commit
aa58c59
1 Parent(s): e272d9f

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 22.42 +/- 147.19
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe5d5797290>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe5d5797320>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe5d57973b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe5d5797440>", "_build": "<function ActorCriticPolicy._build at 0x7fe5d57974d0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe5d5797560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe5d57975f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe5d5797680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe5d5797710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe5d57977a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe5d5797830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe5d57f00c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1665477609478772586, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACzOD428pU/IhbOPkE+qb7gVC4+lWTvPQAAAAAAAAAAgoQKv5ST/71waPK91xmYu0onnz7s44u9AACAPwAAgD8Azei96cirP00TNL9U4Yu+428UvK6jML4AAAAAAAAAACJqGr93EUG+p4yMur44c7nWxtk95q2yOQAAgD8AAIA/5oQyPSlAXroF7gS76zwVtdZAXjtsTRw6AACAPwAAgD+KPAq/gawVvvskOTz+0PG6j1PVPvBWiTwAAIA/AAAAAJq2m71yaGM/+teavYGpjb5iD8w8CdIIPgAAAAAAAAAATXVOPTzJND8bSOC+DU1BvoR/dDy5/5W+AAAAAAAAAAANkPw9m8KpPRiDVryey/q9KvVVvJaKnL0AAAAAAAAAALMtDL5Ij7W6wTsLvIdEl7kVAeM7ntsAOgAAgD8AAIA/svGRvhQpiD/p9zC/sASAvhMXUjtU6D6+AAAAAAAAAAA+NBq/M2MFP/MV1j2dDTG+LEGGvKvLgz0AAAAAAAAAAMF0CL+bvcA9qihZOnEaXjmmT7k+8hjCuQAAgD8AAIA/prqsPdumjD7qoyY+41hpvtkQ4j2yB5G9AAAAAAAAAACeMLW+hcZBPiZ/Nz3eTN69nMXEPC/wmbsAAAAAAAAAAJ1IIr9c66U+iGm0PXFsRL5NnyS+5sb2OwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2zNLAtS0LMCUhpRSlIwBbJRLzowBdJRHQIKRLoOhCdB1fZQoaAZoCWgPQwjjGMkeoaVWQJSGlFKUaBVN6ANoFkdAgqem2sq8UXV9lChoBmgJaA9DCAJmvoOfi1lAlIaUUpRoFU3oA2gWR0CCrNUwSJ0odX2UKGgGaAloD0MILCl3n+O5SUCUhpRSlGgVTegDaBZHQIKxkC/47BB1fZQoaAZoCWgPQwhwCcA/pd9XQJSGlFKUaBVN6ANoFkdAgsVNKqXF+HV9lChoBmgJaA9DCGrcm98wYFVAlIaUUpRoFU3oA2gWR0CC0fHJ9y93dX2UKGgGaAloD0MIVtRgGoYnMcCUhpRSlGgVS/JoFkdAgtTWgezUqnV9lChoBmgJaA9DCJimCHB6JF5AlIaUUpRoFU3oA2gWR0CC/581n/T9dX2UKGgGaAloD0MIwavlzkycWkCUhpRSlGgVTegDaBZHQIMFRpN9H+Z1fZQoaAZoCWgPQwizBu+rch9ZQJSGlFKUaBVN6ANoFkdAgwjIKlYU4HV9lChoBmgJaA9DCHdJnBVRM1VAlIaUUpRoFU3oA2gWR0CDCWuaF23bdX2UKGgGaAloD0MIcNHJUutFIMCUhpRSlGgVS/VoFkdAgx2Cjk+5fHV9lChoBmgJaA9DCEKXcOgtoltAlIaUUpRoFU3oA2gWR0CDHyMMI/qxdX2UKGgGaAloD0MIDrxa7szXVUCUhpRSlGgVTegDaBZHQIMtfYHxBmh1fZQoaAZoCWgPQwiFCaNZ2SFVQJSGlFKUaBVN6ANoFkdAgzA6NVBD5XV9lChoBmgJaA9DCFhYcD/gw19AlIaUUpRoFU3oA2gWR0CDTbIq9XcQdX2UKGgGaAloD0MInYAmwoYUUkCUhpRSlGgVTegDaBZHQINVre2uxKR1fZQoaAZoCWgPQwjBdFq3wTxhQJSGlFKUaBVN6ANoFkdAg1cQp4KQaXV9lChoBmgJaA9DCH7GhQMhdFlAlIaUUpRoFU3oA2gWR0CDXod4FA3UdX2UKGgGaAloD0MInrRwWYUOXUCUhpRSlGgVTegDaBZHQINzQnUlRgt1fZQoaAZoCWgPQwjnw7MEGb9YQJSGlFKUaBVN6ANoFkdAg3076YVqOHV9lChoBmgJaA9DCBcOhGQBcwDAlIaUUpRoFU0DAWgWR0CDhyrZJ04jdX2UKGgGaAloD0MIsI9OXfnlV0CUhpRSlGgVTegDaBZHQIORZUm2LHd1fZQoaAZoCWgPQwhd/dgkP4dfQJSGlFKUaBVN6ANoFkdAg6AuuJUHZHV9lChoBmgJaA9DCATltn2PxlNAlIaUUpRoFU3oA2gWR0CDyrR/mT1TdX2UKGgGaAloD0MIfTz03S0iYECUhpRSlGgVTegDaBZHQIPPysuFpPB1fZQoaAZoCWgPQwhaZDvfT3NIQJSGlFKUaBVN6ANoFkdAg9MaBI4EOnV9lChoBmgJaA9DCH4ZjBGJ3l1AlIaUUpRoFU3oA2gWR0CD07+SbH6udX2UKGgGaAloD0MIPBOaJJa2WkCUhpRSlGgVTegDaBZHQIPoLmhdt2t1fZQoaAZoCWgPQwjzrKQV365NQJSGlFKUaBVN6ANoFkdAg+mTpxFRYXV9lChoBmgJaA9DCLt/LESHCCzAlIaUUpRoFUvXaBZHQIPzBYJVsDZ1fZQoaAZoCWgPQwj8/s2LE5pZQJSGlFKUaBVN6ANoFkdAg/cvvKEFn3V9lChoBmgJaA9DCOFBs+vexEdAlIaUUpRoFU3oA2gWR0CD+VSDyvs7dX2UKGgGaAloD0MI54u9F1/WQECUhpRSlGgVTegDaBZHQIQOFsUIsy11fZQoaAZoCWgPQwjfGW1VEjtOQJSGlFKUaBVN6ANoFkdAhBS78FY+0XV9lChoBmgJaA9DCKzEPCvpWWBAlIaUUpRoFU3oA2gWR0CEFjawljVhdX2UKGgGaAloD0MIzzEge70LXUCUhpRSlGgVTegDaBZHQIQ2IRChN/R1fZQoaAZoCWgPQwgIISBfQsZaQJSGlFKUaBVN6ANoFkdAhEFxHXmNi3V9lChoBmgJaA9DCFkUdlH0p1lAlIaUUpRoFU3oA2gWR0CETJ8UmD15dX2UKGgGaAloD0MItYzUeyqvK0CUhpRSlGgVTT8BaBZHQIROGTxG2Cx1fZQoaAZoCWgPQwgXZqGd09teQJSGlFKUaBVN6ANoFkdAhFZr1M/QjXV9lChoBmgJaA9DCK2+uipQqxTAlIaUUpRoFUvqaBZHQIReeK8+Ro11fZQoaAZoCWgPQwi14bA08AlZQJSGlFKUaBVN6ANoFkdAhGRz3yqdYnV9lChoBmgJaA9DCFewjXiyw2BAlIaUUpRoFU3oA2gWR0CEaKZ2IO6NdX2UKGgGaAloD0MIlDE+zF7BWkCUhpRSlGgVTegDaBZHQISURGlQ/HJ1fZQoaAZoCWgPQwhD5V/LKzdbQJSGlFKUaBVN6ANoFkdAhJdJfx+a0HV9lChoBmgJaA9DCJV9VwT/qlVAlIaUUpRoFU3oA2gWR0CEqzZOBUaRdX2UKGgGaAloD0MIoN/3b14NXUCUhpRSlGgVTegDaBZHQISskj9n9Nx1fZQoaAZoCWgPQwhIjJ5b6HVWQJSGlFKUaBVN6ANoFkdAhLU6GHpKSXV9lChoBmgJaA9DCPbsuUzNK2FAlIaUUpRoFU3oA2gWR0CEuQq0dBBzdX2UKGgGaAloD0MI4h+29GgEVUCUhpRSlGgVTegDaBZHQIS7KRbKRuF1fZQoaAZoCWgPQwiKyoY1lQ9UQJSGlFKUaBVN6ANoFkdAhM1+JHiFTXV9lChoBmgJaA9DCJXW3xKAo1ZAlIaUUpRoFU3oA2gWR0CE03PY4ACGdX2UKGgGaAloD0MIt0Htt3bCAMCUhpRSlGgVTT8BaBZHQITXa99MK1J1fZQoaAZoCWgPQwhk6NhBJSFfQJSGlFKUaBVN6ANoFkdAhPsHnU2DQXV9lChoBmgJaA9DCGHCaFa2dzbAlIaUUpRoFU0FAWgWR0CE+1WxyGSIdX2UKGgGaAloD0MIzTtO0ZERXkCUhpRSlGgVTegDaBZHQIUEQVIqbz91fZQoaAZoCWgPQwh/+WTFcO5UwJSGlFKUaBVN6ANoFkdAhQWa/h2nsXV9lChoBmgJaA9DCOW36GSpY2FAlIaUUpRoFU3oA2gWR0CFDOGs3hn8dX2UKGgGaAloD0MIfCsSE1RZYECUhpRSlGgVTegDaBZHQIUUj1h9b5d1fZQoaAZoCWgPQwhT51Hx/1RgQJSGlFKUaBVN6ANoFkdAhRo+MAFPi3V9lChoBmgJaA9DCPAUcqWeNF1AlIaUUpRoFU3oA2gWR0CFHhjxTbWVdX2UKGgGaAloD0MIXP+uz5wfXECUhpRSlGgVTegDaBZHQIUibP4VRDV1fZQoaAZoCWgPQwhxWvCir4ZLQJSGlFKUaBVN6ANoFkdAhUtZH3Dej3V9lChoBmgJaA9DCMKjjSPWjFtAlIaUUpRoFU3oA2gWR0CFXjsnAqNIdX2UKGgGaAloD0MIt5vgm6YJXkCUhpRSlGgVTegDaBZHQIVouZ9d/rl1fZQoaAZoCWgPQwgGZK93f1ZPQJSGlFKUaBVN6ANoFkdAhWx2/8EV33V9lChoBmgJaA9DCGXIsfUMNVdAlIaUUpRoFU3oA2gWR0CFbnzYEnstdX2UKGgGaAloD0MISl0yjpHjWkCUhpRSlGgVTegDaBZHQIWAju6VdHF1fZQoaAZoCWgPQwh0Q1N2+ixUQJSGlFKUaBVN6ANoFkdAhYqasQumJnV9lChoBmgJaA9DCB6Jl6fzOWNAlIaUUpRoFU3oA2gWR0CFriFnIyTIdX2UKGgGaAloD0MIaEKTxJKEXkCUhpRSlGgVTegDaBZHQIWubvLHMll1fZQoaAZoCWgPQwh6/x8nTNBdQJSGlFKUaBVN6ANoFkdAhbecb70nPXV9lChoBmgJaA9DCKzFpwAY91dAlIaUUpRoFU3oA2gWR0CFuP3evZAZdX2UKGgGaAloD0MIbQIMy59IYECUhpRSlGgVTegDaBZHQIXAzlRxcVx1fZQoaAZoCWgPQwhKl/4lqSRWQJSGlFKUaBVN6ANoFkdAhcjOQhfShXV9lChoBmgJaA9DCP32deCcMVNAlIaUUpRoFU3oA2gWR0CFzry+6Ae8dX2UKGgGaAloD0MIv/T256J3YUCUhpRSlGgVTegDaBZHQIXSpv3rUsp1fZQoaAZoCWgPQwjWqfI9o+tgQJSGlFKUaBVN6ANoFkdAhdcwBHTZx3V9lChoBmgJaA9DCMR3YtaLw1hAlIaUUpRoFU3oA2gWR0CF2g8Hv+fidX2UKGgGaAloD0MIEkpfCDlbVECUhpRSlGgVTegDaBZHQIYUsrK/2011fZQoaAZoCWgPQwhmh/iHrfxgQJSGlFKUaBVN6ANoFkdAhiAYp2ECeXV9lChoBmgJaA9DCEmdgCbC3FNAlIaUUpRoFU3oA2gWR0CGJERYA80UdX2UKGgGaAloD0MIhJuMKkMNZECUhpRSlGgVTegDaBZHQIYmeKTB68h1fZQoaAZoCWgPQwgNNJ9zt/c8wJSGlFKUaBVNPAFoFkdAhiq7g88s+XV9lChoBmgJaA9DCDOJesGnF1NAlIaUUpRoFU3oA2gWR0CGOpc1O0swdX2UKGgGaAloD0MIHJlH/mAUWUCUhpRSlGgVTegDaBZHQIZErTQVsUJ1fZQoaAZoCWgPQwjXhopx/gpHwJSGlFKUaBVNRAFoFkdAhk8VX/5tWXV9lChoBmgJaA9DCDFe86rOF1lAlIaUUpRoFU3oA2gWR0CGaWVv/BFedX2UKGgGaAloD0MInu3RG24GYUCUhpRSlGgVTegDaBZHQIZprBuXNTt1fZQoaAZoCWgPQwg8E5oklt5aQJSGlFKUaBVN6ANoFkdAhnJtx+8XenV9lChoBmgJaA9DCOvDeqNWVk9AlIaUUpRoFU3oA2gWR0CGc510T101dX2UKGgGaAloD0MIYWu28pLDQMCUhpRSlGgVTQoBaBZHQIZ4RTjvNNd1fZQoaAZoCWgPQwjmzHaFPmNbQJSGlFKUaBVN6ANoFkdAhnpXCsOoYXV9lChoBmgJaA9DCL3iqUeayWBAlIaUUpRoFU3oA2gWR0CGgO+C9RJmdX2UKGgGaAloD0MIN8ZOeAlyUkCUhpRSlGgVTegDaBZHQIaFfQyAQQN1fZQoaAZoCWgPQwjBVZ5A2KtdQJSGlFKUaBVN6ANoFkdAhohRWcSXdHV9lChoBmgJaA9DCOz5muWyiT9AlIaUUpRoFU0jAWgWR0CGjYUnogV5dX2UKGgGaAloD0MIgEqVKHupSkCUhpRSlGgVTegDaBZHQIaN6fDk2gp1fZQoaAZoCWgPQwjx1vm3y4YlwJSGlFKUaBVNPAFoFkdAhpAvsRg7YHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.7.14", "Stable-Baselines3": "1.6.2", "PyTorch": "1.12.1+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79f0d3dec6cb83fc813427d7a7f5fa9b4277df35627e090dcdaa68d838e57fa1
3
+ size 147150
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe5d5797290>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe5d5797320>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe5d57973b0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe5d5797440>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fe5d57974d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fe5d5797560>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe5d57975f0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fe5d5797680>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe5d5797710>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe5d57977a0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe5d5797830>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fe5d57f00c0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1665477609478772586,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAACzOD428pU/IhbOPkE+qb7gVC4+lWTvPQAAAAAAAAAAgoQKv5ST/71waPK91xmYu0onnz7s44u9AACAPwAAgD8Azei96cirP00TNL9U4Yu+428UvK6jML4AAAAAAAAAACJqGr93EUG+p4yMur44c7nWxtk95q2yOQAAgD8AAIA/5oQyPSlAXroF7gS76zwVtdZAXjtsTRw6AACAPwAAgD+KPAq/gawVvvskOTz+0PG6j1PVPvBWiTwAAIA/AAAAAJq2m71yaGM/+teavYGpjb5iD8w8CdIIPgAAAAAAAAAATXVOPTzJND8bSOC+DU1BvoR/dDy5/5W+AAAAAAAAAAANkPw9m8KpPRiDVryey/q9KvVVvJaKnL0AAAAAAAAAALMtDL5Ij7W6wTsLvIdEl7kVAeM7ntsAOgAAgD8AAIA/svGRvhQpiD/p9zC/sASAvhMXUjtU6D6+AAAAAAAAAAA+NBq/M2MFP/MV1j2dDTG+LEGGvKvLgz0AAAAAAAAAAMF0CL+bvcA9qihZOnEaXjmmT7k+8hjCuQAAgD8AAIA/prqsPdumjD7qoyY+41hpvtkQ4j2yB5G9AAAAAAAAAACeMLW+hcZBPiZ/Nz3eTN69nMXEPC/wmbsAAAAAAAAAAJ1IIr9c66U+iGm0PXFsRL5NnyS+5sb2OwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI2zNLAtS0LMCUhpRSlIwBbJRLzowBdJRHQIKRLoOhCdB1fZQoaAZoCWgPQwjjGMkeoaVWQJSGlFKUaBVN6ANoFkdAgqem2sq8UXV9lChoBmgJaA9DCAJmvoOfi1lAlIaUUpRoFU3oA2gWR0CCrNUwSJ0odX2UKGgGaAloD0MILCl3n+O5SUCUhpRSlGgVTegDaBZHQIKxkC/47BB1fZQoaAZoCWgPQwhwCcA/pd9XQJSGlFKUaBVN6ANoFkdAgsVNKqXF+HV9lChoBmgJaA9DCGrcm98wYFVAlIaUUpRoFU3oA2gWR0CC0fHJ9y93dX2UKGgGaAloD0MIVtRgGoYnMcCUhpRSlGgVS/JoFkdAgtTWgezUqnV9lChoBmgJaA9DCJimCHB6JF5AlIaUUpRoFU3oA2gWR0CC/581n/T9dX2UKGgGaAloD0MIwavlzkycWkCUhpRSlGgVTegDaBZHQIMFRpN9H+Z1fZQoaAZoCWgPQwizBu+rch9ZQJSGlFKUaBVN6ANoFkdAgwjIKlYU4HV9lChoBmgJaA9DCHdJnBVRM1VAlIaUUpRoFU3oA2gWR0CDCWuaF23bdX2UKGgGaAloD0MIcNHJUutFIMCUhpRSlGgVS/VoFkdAgx2Cjk+5fHV9lChoBmgJaA9DCEKXcOgtoltAlIaUUpRoFU3oA2gWR0CDHyMMI/qxdX2UKGgGaAloD0MIDrxa7szXVUCUhpRSlGgVTegDaBZHQIMtfYHxBmh1fZQoaAZoCWgPQwiFCaNZ2SFVQJSGlFKUaBVN6ANoFkdAgzA6NVBD5XV9lChoBmgJaA9DCFhYcD/gw19AlIaUUpRoFU3oA2gWR0CDTbIq9XcQdX2UKGgGaAloD0MInYAmwoYUUkCUhpRSlGgVTegDaBZHQINVre2uxKR1fZQoaAZoCWgPQwjBdFq3wTxhQJSGlFKUaBVN6ANoFkdAg1cQp4KQaXV9lChoBmgJaA9DCH7GhQMhdFlAlIaUUpRoFU3oA2gWR0CDXod4FA3UdX2UKGgGaAloD0MInrRwWYUOXUCUhpRSlGgVTegDaBZHQINzQnUlRgt1fZQoaAZoCWgPQwjnw7MEGb9YQJSGlFKUaBVN6ANoFkdAg3076YVqOHV9lChoBmgJaA9DCBcOhGQBcwDAlIaUUpRoFU0DAWgWR0CDhyrZJ04jdX2UKGgGaAloD0MIsI9OXfnlV0CUhpRSlGgVTegDaBZHQIORZUm2LHd1fZQoaAZoCWgPQwhd/dgkP4dfQJSGlFKUaBVN6ANoFkdAg6AuuJUHZHV9lChoBmgJaA9DCATltn2PxlNAlIaUUpRoFU3oA2gWR0CDyrR/mT1TdX2UKGgGaAloD0MIfTz03S0iYECUhpRSlGgVTegDaBZHQIPPysuFpPB1fZQoaAZoCWgPQwhaZDvfT3NIQJSGlFKUaBVN6ANoFkdAg9MaBI4EOnV9lChoBmgJaA9DCH4ZjBGJ3l1AlIaUUpRoFU3oA2gWR0CD07+SbH6udX2UKGgGaAloD0MIPBOaJJa2WkCUhpRSlGgVTegDaBZHQIPoLmhdt2t1fZQoaAZoCWgPQwjzrKQV365NQJSGlFKUaBVN6ANoFkdAg+mTpxFRYXV9lChoBmgJaA9DCLt/LESHCCzAlIaUUpRoFUvXaBZHQIPzBYJVsDZ1fZQoaAZoCWgPQwj8/s2LE5pZQJSGlFKUaBVN6ANoFkdAg/cvvKEFn3V9lChoBmgJaA9DCOFBs+vexEdAlIaUUpRoFU3oA2gWR0CD+VSDyvs7dX2UKGgGaAloD0MI54u9F1/WQECUhpRSlGgVTegDaBZHQIQOFsUIsy11fZQoaAZoCWgPQwjfGW1VEjtOQJSGlFKUaBVN6ANoFkdAhBS78FY+0XV9lChoBmgJaA9DCKzEPCvpWWBAlIaUUpRoFU3oA2gWR0CEFjawljVhdX2UKGgGaAloD0MIzzEge70LXUCUhpRSlGgVTegDaBZHQIQ2IRChN/R1fZQoaAZoCWgPQwgIISBfQsZaQJSGlFKUaBVN6ANoFkdAhEFxHXmNi3V9lChoBmgJaA9DCFkUdlH0p1lAlIaUUpRoFU3oA2gWR0CETJ8UmD15dX2UKGgGaAloD0MItYzUeyqvK0CUhpRSlGgVTT8BaBZHQIROGTxG2Cx1fZQoaAZoCWgPQwgXZqGd09teQJSGlFKUaBVN6ANoFkdAhFZr1M/QjXV9lChoBmgJaA9DCK2+uipQqxTAlIaUUpRoFUvqaBZHQIReeK8+Ro11fZQoaAZoCWgPQwi14bA08AlZQJSGlFKUaBVN6ANoFkdAhGRz3yqdYnV9lChoBmgJaA9DCFewjXiyw2BAlIaUUpRoFU3oA2gWR0CEaKZ2IO6NdX2UKGgGaAloD0MIlDE+zF7BWkCUhpRSlGgVTegDaBZHQISURGlQ/HJ1fZQoaAZoCWgPQwhD5V/LKzdbQJSGlFKUaBVN6ANoFkdAhJdJfx+a0HV9lChoBmgJaA9DCJV9VwT/qlVAlIaUUpRoFU3oA2gWR0CEqzZOBUaRdX2UKGgGaAloD0MIoN/3b14NXUCUhpRSlGgVTegDaBZHQISskj9n9Nx1fZQoaAZoCWgPQwhIjJ5b6HVWQJSGlFKUaBVN6ANoFkdAhLU6GHpKSXV9lChoBmgJaA9DCPbsuUzNK2FAlIaUUpRoFU3oA2gWR0CEuQq0dBBzdX2UKGgGaAloD0MI4h+29GgEVUCUhpRSlGgVTegDaBZHQIS7KRbKRuF1fZQoaAZoCWgPQwiKyoY1lQ9UQJSGlFKUaBVN6ANoFkdAhM1+JHiFTXV9lChoBmgJaA9DCJXW3xKAo1ZAlIaUUpRoFU3oA2gWR0CE03PY4ACGdX2UKGgGaAloD0MIt0Htt3bCAMCUhpRSlGgVTT8BaBZHQITXa99MK1J1fZQoaAZoCWgPQwhk6NhBJSFfQJSGlFKUaBVN6ANoFkdAhPsHnU2DQXV9lChoBmgJaA9DCGHCaFa2dzbAlIaUUpRoFU0FAWgWR0CE+1WxyGSIdX2UKGgGaAloD0MIzTtO0ZERXkCUhpRSlGgVTegDaBZHQIUEQVIqbz91fZQoaAZoCWgPQwh/+WTFcO5UwJSGlFKUaBVN6ANoFkdAhQWa/h2nsXV9lChoBmgJaA9DCOW36GSpY2FAlIaUUpRoFU3oA2gWR0CFDOGs3hn8dX2UKGgGaAloD0MIfCsSE1RZYECUhpRSlGgVTegDaBZHQIUUj1h9b5d1fZQoaAZoCWgPQwhT51Hx/1RgQJSGlFKUaBVN6ANoFkdAhRo+MAFPi3V9lChoBmgJaA9DCPAUcqWeNF1AlIaUUpRoFU3oA2gWR0CFHhjxTbWVdX2UKGgGaAloD0MIXP+uz5wfXECUhpRSlGgVTegDaBZHQIUibP4VRDV1fZQoaAZoCWgPQwhxWvCir4ZLQJSGlFKUaBVN6ANoFkdAhUtZH3Dej3V9lChoBmgJaA9DCMKjjSPWjFtAlIaUUpRoFU3oA2gWR0CFXjsnAqNIdX2UKGgGaAloD0MIt5vgm6YJXkCUhpRSlGgVTegDaBZHQIVouZ9d/rl1fZQoaAZoCWgPQwgGZK93f1ZPQJSGlFKUaBVN6ANoFkdAhWx2/8EV33V9lChoBmgJaA9DCGXIsfUMNVdAlIaUUpRoFU3oA2gWR0CFbnzYEnstdX2UKGgGaAloD0MISl0yjpHjWkCUhpRSlGgVTegDaBZHQIWAju6VdHF1fZQoaAZoCWgPQwh0Q1N2+ixUQJSGlFKUaBVN6ANoFkdAhYqasQumJnV9lChoBmgJaA9DCB6Jl6fzOWNAlIaUUpRoFU3oA2gWR0CFriFnIyTIdX2UKGgGaAloD0MIaEKTxJKEXkCUhpRSlGgVTegDaBZHQIWubvLHMll1fZQoaAZoCWgPQwh6/x8nTNBdQJSGlFKUaBVN6ANoFkdAhbecb70nPXV9lChoBmgJaA9DCKzFpwAY91dAlIaUUpRoFU3oA2gWR0CFuP3evZAZdX2UKGgGaAloD0MIbQIMy59IYECUhpRSlGgVTegDaBZHQIXAzlRxcVx1fZQoaAZoCWgPQwhKl/4lqSRWQJSGlFKUaBVN6ANoFkdAhcjOQhfShXV9lChoBmgJaA9DCP32deCcMVNAlIaUUpRoFU3oA2gWR0CFzry+6Ae8dX2UKGgGaAloD0MIv/T256J3YUCUhpRSlGgVTegDaBZHQIXSpv3rUsp1fZQoaAZoCWgPQwjWqfI9o+tgQJSGlFKUaBVN6ANoFkdAhdcwBHTZx3V9lChoBmgJaA9DCMR3YtaLw1hAlIaUUpRoFU3oA2gWR0CF2g8Hv+fidX2UKGgGaAloD0MIEkpfCDlbVECUhpRSlGgVTegDaBZHQIYUsrK/2011fZQoaAZoCWgPQwhmh/iHrfxgQJSGlFKUaBVN6ANoFkdAhiAYp2ECeXV9lChoBmgJaA9DCEmdgCbC3FNAlIaUUpRoFU3oA2gWR0CGJERYA80UdX2UKGgGaAloD0MIhJuMKkMNZECUhpRSlGgVTegDaBZHQIYmeKTB68h1fZQoaAZoCWgPQwgNNJ9zt/c8wJSGlFKUaBVNPAFoFkdAhiq7g88s+XV9lChoBmgJaA9DCDOJesGnF1NAlIaUUpRoFU3oA2gWR0CGOpc1O0swdX2UKGgGaAloD0MIHJlH/mAUWUCUhpRSlGgVTegDaBZHQIZErTQVsUJ1fZQoaAZoCWgPQwjXhopx/gpHwJSGlFKUaBVNRAFoFkdAhk8VX/5tWXV9lChoBmgJaA9DCDFe86rOF1lAlIaUUpRoFU3oA2gWR0CGaWVv/BFedX2UKGgGaAloD0MInu3RG24GYUCUhpRSlGgVTegDaBZHQIZprBuXNTt1fZQoaAZoCWgPQwg8E5oklt5aQJSGlFKUaBVN6ANoFkdAhnJtx+8XenV9lChoBmgJaA9DCOvDeqNWVk9AlIaUUpRoFU3oA2gWR0CGc510T101dX2UKGgGaAloD0MIYWu28pLDQMCUhpRSlGgVTQoBaBZHQIZ4RTjvNNd1fZQoaAZoCWgPQwjmzHaFPmNbQJSGlFKUaBVN6ANoFkdAhnpXCsOoYXV9lChoBmgJaA9DCL3iqUeayWBAlIaUUpRoFU3oA2gWR0CGgO+C9RJmdX2UKGgGaAloD0MIN8ZOeAlyUkCUhpRSlGgVTegDaBZHQIaFfQyAQQN1fZQoaAZoCWgPQwjBVZ5A2KtdQJSGlFKUaBVN6ANoFkdAhohRWcSXdHV9lChoBmgJaA9DCOz5muWyiT9AlIaUUpRoFU0jAWgWR0CGjYUnogV5dX2UKGgGaAloD0MIgEqVKHupSkCUhpRSlGgVTegDaBZHQIaN6fDk2gp1fZQoaAZoCWgPQwjx1vm3y4YlwJSGlFKUaBVNPAFoFkdAhpAvsRg7YHVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvdXNyL2xvY2FsL2xpYi9weXRob24zLjcvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ae5689046fe64077a98f3f61f9e22768303fcb5c986c73f16e0f81b0798ab7e
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc9a5c8c6516cb5d16d66bea6c3a8e87f0cba179a0386ce37de8f51ac63034cd
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.7.14
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.12.1+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (253 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 22.416691547244803, "std_reward": 147.19368762032246, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-10-11T09:04:22.917557"}