--- license: mit base_model: bert-base-german-dbmdz-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: product_classifier_split_url_nodigit_all results: [] --- # product_classifier_split_url_nodigit_all This model is a fine-tuned version of [bert-base-german-dbmdz-uncased](https://huggingface.co/bert-base-german-dbmdz-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1833 - Accuracy: 0.9734 - F1: 0.9732 - Precision: 0.9731 - Recall: 0.9734 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.0385 | 1.0 | 1300 | 0.1880 | 0.9666 | 0.9663 | 0.9665 | 0.9666 | | 0.0198 | 2.0 | 2600 | 0.1707 | 0.9718 | 0.9718 | 0.9719 | 0.9718 | | 0.0083 | 3.0 | 3900 | 0.1833 | 0.9734 | 0.9732 | 0.9731 | 0.9734 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3