siddharthtumre commited on
Commit
a7a36cc
1 Parent(s): 635722a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +92 -0
README.md ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - jnlpba
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: scibert-finetuned-ner
13
+ results:
14
+ - task:
15
+ name: Token Classification
16
+ type: token-classification
17
+ dataset:
18
+ name: jnlpba
19
+ type: jnlpba
20
+ config: jnlpba
21
+ split: train
22
+ args: jnlpba
23
+ metrics:
24
+ - name: Precision
25
+ type: precision
26
+ value: 0.6737190414118119
27
+ - name: Recall
28
+ type: recall
29
+ value: 0.7756869083352574
30
+ - name: F1
31
+ type: f1
32
+ value: 0.7211161792326267
33
+ - name: Accuracy
34
+ type: accuracy
35
+ value: 0.9226268866380928
36
+ ---
37
+
38
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
39
+ should probably proofread and complete it, then remove this comment. -->
40
+
41
+ # scibert-finetuned-ner
42
+
43
+ This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the jnlpba dataset.
44
+ It achieves the following results on the evaluation set:
45
+ - Loss: 0.4717
46
+ - Precision: 0.6737
47
+ - Recall: 0.7757
48
+ - F1: 0.7211
49
+ - Accuracy: 0.9226
50
+
51
+ ## Model description
52
+
53
+ More information needed
54
+
55
+ ## Intended uses & limitations
56
+
57
+ More information needed
58
+
59
+ ## Training and evaluation data
60
+
61
+ More information needed
62
+
63
+ ## Training procedure
64
+
65
+ ### Training hyperparameters
66
+
67
+ The following hyperparameters were used during training:
68
+ - learning_rate: 2e-05
69
+ - train_batch_size: 16
70
+ - eval_batch_size: 16
71
+ - seed: 42
72
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
73
+ - lr_scheduler_type: linear
74
+ - num_epochs: 5
75
+
76
+ ### Training results
77
+
78
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
79
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
80
+ | 0.1608 | 1.0 | 2319 | 0.2431 | 0.6641 | 0.7581 | 0.7080 | 0.9250 |
81
+ | 0.103 | 2.0 | 4638 | 0.2916 | 0.6739 | 0.7803 | 0.7232 | 0.9228 |
82
+ | 0.0659 | 3.0 | 6957 | 0.3662 | 0.6796 | 0.7624 | 0.7186 | 0.9233 |
83
+ | 0.0393 | 4.0 | 9276 | 0.4222 | 0.6737 | 0.7771 | 0.7217 | 0.9225 |
84
+ | 0.025 | 5.0 | 11595 | 0.4717 | 0.6737 | 0.7757 | 0.7211 | 0.9226 |
85
+
86
+
87
+ ### Framework versions
88
+
89
+ - Transformers 4.21.1
90
+ - Pytorch 1.12.1+cu113
91
+ - Datasets 2.4.0
92
+ - Tokenizers 0.12.1