--- license: creativeml-openrail-m library_name: diffusers tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - controlnet - diffusers-training - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - controlnet - diffusers-training base_model: stabilityai/stable-diffusion-2-1-base datasets: - gvecchio/MatSynth inference: true --- # controlnet_normal Generate a normal map from a photograph or basecolor (albedo) map. # Usage ``` import argparse from PIL import Image from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler from diffusers.utils import load_image import torch parser = argparse.ArgumentParser(description="Args for parser") parser.add_argument("--seed", type=int, default=1, help="Seed for inference") args = parser.parse_args() base_model_path = "stabilityai/stable-diffusion-2-1-base" controlnet_path = "sidnarsipur/controlnet_normal" controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16) pipe = StableDiffusionControlNetPipeline.from_pretrained( base_model_path, controlnet=controlnet, torch_dtype=torch.float16 ) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) pipe.enable_xformers_memory_efficient_attention() pipe.enable_model_cpu_offload() control_image = load_image("inference/basecolor.png") #Change based on your image path prompt = "Normal Map" #Don't change! if control_image.size[0] > 2048 or control_image.size[1] > 2048: #Optional control_image = control_image.resize((control_image.size[0] // 2, control_image.size[1] // 2)) generator = torch.manual_seed(args.seed) image = pipe( prompt, num_inference_steps=50, generator=generator, image=control_image ).images[0] image.save("inference/normal.png")