--- tags: - spacy - token-classification language: - zh license: mit model-index: - name: zh_core_web_trf results: - task: name: NER type: token-classification metrics: - name: NER Precision type: precision value: 0.7608897127 - name: NER Recall type: recall value: 0.7217582418 - name: NER F Score type: f_score value: 0.7408075795 - task: name: TAG type: token-classification metrics: - name: TAG (XPOS) Accuracy type: accuracy value: 0.9175332527 - task: name: UNLABELED_DEPENDENCIES type: token-classification metrics: - name: Unlabeled Attachment Score (UAS) type: f_score value: 0.7572203056 - task: name: LABELED_DEPENDENCIES type: token-classification metrics: - name: Labeled Attachment Score (LAS) type: f_score value: 0.7145288854 - task: name: SENTS type: token-classification metrics: - name: Sentences F-Score type: f_score value: 0.6920716113 --- ## data_dev_spacy_zh_lg_1 Chinese spacy model, based on the spacy stock zh_core_web_trf transformer-based model, used for regular day to day data engineering. Chinese transformer pipeline (Transformer(name='bert-base-chinese', piece_encoder='bert-wordpiece', stride=152, type='bert', width=768, window=208, vocab_size=21128)). Components: transformer, tagger, parser, ner, attribute_ruler. | Feature | Description | | --- | --- | | **Name** | `zh_core_web_trf` | | **Version** | `3.7.2` | | **spaCy** | `>=3.7.0,<3.8.0` | | **Default Pipeline** | `transformer`, `tagger`, `parser`, `attribute_ruler`, `ner` | | **Components** | `transformer`, `tagger`, `parser`, `attribute_ruler`, `ner` | | **Vectors** | 0 keys, 0 unique vectors (0 dimensions) | | **Sources** | [OntoNotes 5](https://catalog.ldc.upenn.edu/LDC2013T19) (Ralph Weischedel, Martha Palmer, Mitchell Marcus, Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle Franchini, Mohammed El-Bachouti, Robert Belvin, Ann Houston)
[CoreNLP Universal Dependencies Converter](https://nlp.stanford.edu/software/stanford-dependencies.html) (Stanford NLP Group)
[bert-base-chinese](https://huggingface.co/bert-base-chinese) (Hugging Face) | | **License** | `MIT` | | **Author** | [Explosion](https://explosion.ai) | ### Label Scheme
View label scheme (99 labels for 3 components) | Component | Labels | | --- | --- | | **`tagger`** | `AD`, `AS`, `BA`, `CC`, `CD`, `CS`, `DEC`, `DEG`, `DER`, `DEV`, `DT`, `ETC`, `FW`, `IJ`, `INF`, `JJ`, `LB`, `LC`, `M`, `MSP`, `NN`, `NR`, `NT`, `OD`, `ON`, `P`, `PN`, `PU`, `SB`, `SP`, `URL`, `VA`, `VC`, `VE`, `VV`, `X` | | **`parser`** | `ROOT`, `acl`, `advcl:loc`, `advmod`, `advmod:dvp`, `advmod:loc`, `advmod:rcomp`, `amod`, `amod:ordmod`, `appos`, `aux:asp`, `aux:ba`, `aux:modal`, `aux:prtmod`, `auxpass`, `case`, `cc`, `ccomp`, `compound:nn`, `compound:vc`, `conj`, `cop`, `dep`, `det`, `discourse`, `dobj`, `etc`, `mark`, `mark:clf`, `name`, `neg`, `nmod`, `nmod:assmod`, `nmod:poss`, `nmod:prep`, `nmod:range`, `nmod:tmod`, `nmod:topic`, `nsubj`, `nsubj:xsubj`, `nsubjpass`, `nummod`, `parataxis:prnmod`, `punct`, `xcomp` | | **`ner`** | `CARDINAL`, `DATE`, `EVENT`, `FAC`, `GPE`, `LANGUAGE`, `LAW`, `LOC`, `MONEY`, `NORP`, `ORDINAL`, `ORG`, `PERCENT`, `PERSON`, `PRODUCT`, `QUANTITY`, `TIME`, `WORK_OF_ART` |
### Accuracy | Type | Score | | --- | --- | | `TOKEN_ACC` | 95.85 | | `TOKEN_P` | 94.58 | | `TOKEN_R` | 91.36 | | `TOKEN_F` | 92.94 | | `TAG_ACC` | 91.75 | | `SENTS_P` | 70.92 | | `SENTS_R` | 67.57 | | `SENTS_F` | 69.21 | | `DEP_UAS` | 75.72 | | `DEP_LAS` | 71.45 | | `ENTS_P` | 76.09 | | `ENTS_R` | 72.18 | | `ENTS_F` | 74.08 |