File size: 6,330 Bytes
58cabbc
e60b4f6
58cabbc
 
e60b4f6
 
58cabbc
13c4309
58cabbc
 
 
8752c0f
58cabbc
13c4309
58cabbc
229c45e
58cabbc
13c4309
 
 
58cabbc
 
 
8752c0f
 
 
 
229c45e
58cabbc
 
 
e60b4f6
 
 
58cabbc
 
 
229c45e
58cabbc
 
 
229c45e
 
58cabbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13c4309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58cabbc
 
 
 
 
13c4309
 
58cabbc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
---
license: mit
tags:
- generated_from_trainer
language:
- cak
model-index:
- name: wav2vec2-large-xls-r-300m-kaqchikel-with-bloom
  results: []
---

![sil-ai logo](https://s3.amazonaws.com/moonup/production/uploads/1661440873726-6108057a823007eaf0c7bd10.png) 

# wav2vec2-large-xls-r-300m-kaqchikel-with-bloom

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on a collection of audio from [Deditos](deditos.org) videos in Kaqchikel provided by [Viña Studios](www.vinyastudios.org) and Kaqchikel audio from audiobooks on [Bloom Library](bloomlibrary.org).
It achieves the following results on the evaluation set:
- Loss: 0.6700
- Cer: 0.0854
- Wer: 0.3069

## Model description

- **Homepage:** [SIL AI](https://ai.sil.org/)
- **Point of Contact:** [SIL AI email](mailto:idx_aqua@sil.org)
- **Source Data:** [Bloom Library](https://bloomlibrary.org/) and [Viña Studios](https://www.vinyastudios.org)

This model is a baseline model finetuned from [XLS-R 300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m). Users should refer to the original model for tutorials on using a trained model for inference.

## Intended uses & limitations

Users of this model should abide by the [UN Declarations on the Rights of Indigenous Peoples](https://www.un.org/development/desa/indigenouspeoples/declaration-on-the-rights-of-indigenous-peoples.html).

This model is released under the MIT license and no guarantees are made regarding the performance of the model is specific situations.

## Training and evaluation data

Training, Validation, and Test datasets were generated from the same corpus, ensuring that no duplicate files were used.

## Training procedure

Standard finetuning of XLS-R was used based on the examples in the [Hugging Face Transformers Github](https://github.com/huggingface/transformers/tree/main/examples/pytorch/speech-recognition)

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 100
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Cer    | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 11.1557       | 1.84  | 100  | 4.2251          | 1.0    | 1.0    |
| 3.7231        | 3.7   | 200  | 3.5794          | 1.0    | 1.0    |
| 3.3076        | 5.55  | 300  | 3.4362          | 1.0    | 1.0    |
| 3.2495        | 7.4   | 400  | 3.2553          | 1.0    | 1.0    |
| 3.2076        | 9.26  | 500  | 3.2932          | 1.0    | 1.0    |
| 3.1304        | 11.11 | 600  | 3.1100          | 1.0    | 1.0    |
| 2.899         | 12.95 | 700  | 2.4021          | 0.8477 | 1.0    |
| 2.2875        | 14.81 | 800  | 1.5473          | 0.4790 | 0.9984 |
| 1.7605        | 16.66 | 900  | 1.1034          | 0.3061 | 0.9192 |
| 1.3802        | 18.51 | 1000 | 0.9422          | 0.2386 | 0.8530 |
| 1.0989        | 20.37 | 1100 | 0.7429          | 0.1667 | 0.6042 |
| 0.857         | 22.22 | 1200 | 0.7490          | 0.1499 | 0.5751 |
| 0.6899        | 24.07 | 1300 | 0.6376          | 0.1286 | 0.4798 |
| 0.5927        | 25.92 | 1400 | 0.6887          | 0.1232 | 0.4443 |
| 0.4699        | 27.77 | 1500 | 0.6341          | 0.1184 | 0.4378 |
| 0.4029        | 29.62 | 1600 | 0.6341          | 0.1103 | 0.4216 |
| 0.3492        | 31.48 | 1700 | 0.6709          | 0.1121 | 0.4120 |
| 0.3019        | 33.33 | 1800 | 0.7665          | 0.1097 | 0.4136 |
| 0.2681        | 35.18 | 1900 | 0.6671          | 0.1085 | 0.4120 |
| 0.2491        | 37.04 | 2000 | 0.7049          | 0.1010 | 0.3748 |
| 0.2108        | 38.88 | 2100 | 0.6699          | 0.1064 | 0.3974 |
| 0.2146        | 40.73 | 2200 | 0.7037          | 0.1046 | 0.3780 |
| 0.1854        | 42.59 | 2300 | 0.6970          | 0.1055 | 0.4006 |
| 0.1693        | 44.44 | 2400 | 0.6593          | 0.0980 | 0.3764 |
| 0.1628        | 46.29 | 2500 | 0.7162          | 0.0998 | 0.3764 |
| 0.156         | 48.15 | 2600 | 0.6445          | 0.0998 | 0.3829 |
| 0.1439        | 49.99 | 2700 | 0.6437          | 0.1004 | 0.3845 |
| 0.1292        | 51.84 | 2800 | 0.6471          | 0.0944 | 0.3457 |
| 0.1287        | 53.7  | 2900 | 0.6411          | 0.0923 | 0.3538 |
| 0.1186        | 55.55 | 3000 | 0.6754          | 0.0992 | 0.3813 |
| 0.1175        | 57.4  | 3100 | 0.6741          | 0.0953 | 0.3538 |
| 0.1082        | 59.26 | 3200 | 0.6949          | 0.0977 | 0.3619 |
| 0.105         | 61.11 | 3300 | 0.6919          | 0.0983 | 0.3683 |
| 0.1048        | 62.95 | 3400 | 0.6802          | 0.0950 | 0.3425 |
| 0.092         | 64.81 | 3500 | 0.6830          | 0.0962 | 0.3263 |
| 0.0904        | 66.66 | 3600 | 0.6993          | 0.0971 | 0.3554 |
| 0.0914        | 68.51 | 3700 | 0.6932          | 0.0995 | 0.3554 |
| 0.0823        | 70.37 | 3800 | 0.6742          | 0.0950 | 0.3409 |
| 0.0799        | 72.22 | 3900 | 0.6852          | 0.0917 | 0.3279 |
| 0.0767        | 74.07 | 4000 | 0.6684          | 0.0929 | 0.3489 |
| 0.0736        | 75.92 | 4100 | 0.6611          | 0.0923 | 0.3393 |
| 0.0708        | 77.77 | 4200 | 0.7123          | 0.0944 | 0.3393 |
| 0.0661        | 79.62 | 4300 | 0.6577          | 0.0899 | 0.3247 |
| 0.0651        | 81.48 | 4400 | 0.6671          | 0.0869 | 0.3150 |
| 0.0607        | 83.33 | 4500 | 0.6980          | 0.0893 | 0.3231 |
| 0.0552        | 85.18 | 4600 | 0.6947          | 0.0884 | 0.3183 |
| 0.0574        | 87.04 | 4700 | 0.6652          | 0.0899 | 0.3183 |
| 0.0503        | 88.88 | 4800 | 0.6798          | 0.0863 | 0.3053 |
| 0.0479        | 90.73 | 4900 | 0.6690          | 0.0884 | 0.3166 |
| 0.0483        | 92.59 | 5000 | 0.6789          | 0.0872 | 0.3069 |
| 0.0437        | 94.44 | 5100 | 0.6758          | 0.0875 | 0.3069 |
| 0.0458        | 96.29 | 5200 | 0.6662          | 0.0884 | 0.3102 |
| 0.0434        | 98.15 | 5300 | 0.6699          | 0.0881 | 0.3069 |
| 0.0449        | 99.99 | 5400 | 0.6700          | 0.0854 | 0.3069 |


### Framework versions

- Transformers 4.11.3
- Pytorch 1.10.0+cu113
- Datasets 2.2.1
- Tokenizers 0.10.3