Update README.md
Browse files
README.md
CHANGED
@@ -1,4 +1,14 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
datasets:
|
3 |
- hellaswag
|
4 |
- ag_news
|
@@ -134,204 +144,64 @@ datasets:
|
|
134 |
- winogrande
|
135 |
- relbert/lexical_relation_classification
|
136 |
- metaeval/linguisticprobing
|
|
|
|
|
|
|
137 |
---
|
138 |
|
139 |
-
# Model Card for
|
140 |
|
141 |
-
|
|
|
142 |
|
143 |
-
|
|
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
3. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
|
148 |
-
4. [Training Details](#training-details)
|
149 |
-
5. [Evaluation](#evaluation)
|
150 |
-
6. [Model Examination](#model-examination-optional)
|
151 |
-
7. [Environmental Impact](#environmental-impact)
|
152 |
-
8. [Technical Specifications](#technical-specifications-optional)
|
153 |
-
9. [Citation](#citation-optional)
|
154 |
-
10. [Glossary](#glossary-optional)
|
155 |
-
11. [More Information](#more-information-optional)
|
156 |
-
12. [Model Card Authors](#model-card-authors-optional)
|
157 |
-
13. [Model Card Contact](#model-card-contact)
|
158 |
-
14. [How To Get Started With the Model](#how-to-get-started-with-the-model)
|
159 |
|
|
|
160 |
|
161 |
-
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
<!-- Provide a longer summary of what this model is. -->
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
- **Developed by:** [More Information Needed]
|
170 |
-
- **Shared by [optional]:** [More Information Needed]
|
171 |
-
- **Model type:** [More Information Needed]
|
172 |
-
- **Language(s) (NLP):** [More Information Needed]
|
173 |
-
- **License:** [More Information Needed]
|
174 |
-
- **Related Models [optional]:** [More Information Needed]
|
175 |
-
- **Parent Model [optional]:** [More Information Needed]
|
176 |
-
- **Resources for more information:** [More Information Needed]
|
177 |
-
|
178 |
-
# Uses
|
179 |
-
|
180 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
181 |
-
|
182 |
-
## Direct Use
|
183 |
-
|
184 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
185 |
-
|
186 |
-
[More Information Needed]
|
187 |
-
|
188 |
-
## Downstream Use [optional]
|
189 |
-
|
190 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
191 |
-
|
192 |
-
[More Information Needed]
|
193 |
-
|
194 |
-
## Out-of-Scope Use
|
195 |
-
|
196 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
197 |
-
|
198 |
-
[More Information Needed]
|
199 |
-
|
200 |
-
# Bias, Risks, and Limitations
|
201 |
-
|
202 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
203 |
-
|
204 |
-
[More Information Needed]
|
205 |
-
|
206 |
-
## Recommendations
|
207 |
-
|
208 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
209 |
-
|
210 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations.
|
211 |
-
|
212 |
-
# Training Details
|
213 |
-
|
214 |
-
## Training Data
|
215 |
-
|
216 |
-
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
217 |
-
|
218 |
-
[More Information Needed]
|
219 |
-
|
220 |
-
## Training Procedure [optional]
|
221 |
-
|
222 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
223 |
-
|
224 |
-
### Preprocessing
|
225 |
-
|
226 |
-
[More Information Needed]
|
227 |
-
|
228 |
-
### Speeds, Sizes, Times
|
229 |
-
|
230 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
231 |
-
|
232 |
-
[More Information Needed]
|
233 |
-
|
234 |
-
# Evaluation
|
235 |
-
|
236 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
237 |
-
|
238 |
-
## Testing Data, Factors & Metrics
|
239 |
-
|
240 |
-
### Testing Data
|
241 |
-
|
242 |
-
<!-- This should link to a Data Card if possible. -->
|
243 |
-
|
244 |
-
[More Information Needed]
|
245 |
-
|
246 |
-
### Factors
|
247 |
-
|
248 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
249 |
-
|
250 |
-
[More Information Needed]
|
251 |
-
|
252 |
-
### Metrics
|
253 |
-
|
254 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
255 |
-
|
256 |
-
[More Information Needed]
|
257 |
-
|
258 |
-
## Results
|
259 |
-
|
260 |
-
[More Information Needed]
|
261 |
-
|
262 |
-
# Model Examination [optional]
|
263 |
-
|
264 |
-
<!-- Relevant interpretability work for the model goes here -->
|
265 |
-
|
266 |
-
[More Information Needed]
|
267 |
-
|
268 |
-
# Environmental Impact
|
269 |
-
|
270 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
271 |
-
|
272 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
273 |
-
|
274 |
-
- **Hardware Type:** [More Information Needed]
|
275 |
-
- **Hours used:** [More Information Needed]
|
276 |
-
- **Cloud Provider:** [More Information Needed]
|
277 |
-
- **Compute Region:** [More Information Needed]
|
278 |
-
- **Carbon Emitted:** [More Information Needed]
|
279 |
-
|
280 |
-
# Technical Specifications [optional]
|
281 |
-
|
282 |
-
## Model Architecture and Objective
|
283 |
|
284 |
-
|
|
|
285 |
|
286 |
-
##
|
287 |
|
288 |
-
[
|
289 |
|
290 |
-
|
|
|
291 |
|
292 |
-
|
|
|
|
|
293 |
|
294 |
-
### Software
|
295 |
|
296 |
-
[
|
297 |
|
298 |
# Citation [optional]
|
299 |
|
300 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
301 |
-
|
302 |
**BibTeX:**
|
303 |
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
|
|
|
|
|
|
311 |
|
312 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
313 |
-
|
314 |
-
[More Information Needed]
|
315 |
-
|
316 |
-
# More Information [optional]
|
317 |
-
|
318 |
-
[More Information Needed]
|
319 |
-
|
320 |
-
# Model Card Authors [optional]
|
321 |
-
|
322 |
-
[More Information Needed]
|
323 |
|
324 |
# Model Card Contact
|
325 |
|
326 |
-
|
327 |
-
|
328 |
-
# How to Get Started with the Model
|
329 |
-
|
330 |
-
Use the code below to get started with the model.
|
331 |
-
|
332 |
-
<details>
|
333 |
-
<summary> Click to expand </summary>
|
334 |
|
335 |
-
[More Information Needed]
|
336 |
|
337 |
</details>
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
language: en
|
4 |
+
tags:
|
5 |
+
- deberta-v3-base
|
6 |
+
- text-classification
|
7 |
+
- nli
|
8 |
+
- natural-language-inference
|
9 |
+
- multitask
|
10 |
+
- extreme-mtl
|
11 |
+
pipeline_tag: zero-shot-classification
|
12 |
datasets:
|
13 |
- hellaswag
|
14 |
- ag_news
|
|
|
144 |
- winogrande
|
145 |
- relbert/lexical_relation_classification
|
146 |
- metaeval/linguisticprobing
|
147 |
+
metrics:
|
148 |
+
- accuracy
|
149 |
+
library_name: transformers
|
150 |
---
|
151 |
|
152 |
+
# Model Card for DeBERTa-v3-base-tasksource-nli
|
153 |
|
154 |
+
DeBERTa model jointly fine-tuned on 444 tasks of the tasksource collection https://github.com/sileod/tasksource/
|
155 |
+
This is the model with the MNLI classifier on top. Its encoder was trained on many datasets including bigbench, Anthropic/hh-rlhf... alongside many NLI and classification tasks with a SequenceClassification heads while using only one shared encoder.
|
156 |
|
157 |
+
Each task had a specific CLS embedding, which is dropped 10% of the time to facilitate model use without it. All multiple-choice model used the same classification layers. For classification tasks, models shared weights if their labels matched.
|
158 |
+
The number of examples per task was capped to 64. The model was trained for 20k steps with a batch size of 384, a peak learning rate of 2e-5.
|
159 |
|
160 |
+
You can fine-tune this model to use it for multiple-choice or any classification task (e.g. NLI) like any debertav2 model.
|
161 |
+
This model has strong validation performance on many tasks (e.g. 70% on WNLI).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
+
The list of tasks is available in tasks.md
|
164 |
|
165 |
+
code: https://colab.research.google.com/drive/1iB4Oxl9_B5W3ZDzXoWJN-olUbqLBxgQS?usp=sharing
|
166 |
|
167 |
+
### Software
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
+
https://github.com/sileod/tasknet/
|
170 |
+
Training took 3 days on 24GB gpu.
|
171 |
|
172 |
+
## Model Recycling
|
173 |
|
174 |
+
[Evaluation on 36 datasets](https://ibm.github.io/model-recycling/model_gain_chart?avg=1.41&mnli_lp=nan&20_newsgroup=0.63&ag_news=0.46&amazon_reviews_multi=-0.40&anli=0.94&boolq=2.55&cb=10.71&cola=0.49&copa=10.60&dbpedia=0.10&esnli=-0.25&financial_phrasebank=1.31&imdb=-0.17&isear=0.63&mnli=0.42&mrpc=-0.23&multirc=1.73&poem_sentiment=0.77&qnli=0.12&qqp=-0.05&rotten_tomatoes=0.67&rte=2.13&sst2=0.01&sst_5bins=-0.02&stsb=1.39&trec_coarse=0.24&trec_fine=0.18&tweet_ev_emoji=0.62&tweet_ev_emotion=0.43&tweet_ev_hate=1.84&tweet_ev_irony=1.43&tweet_ev_offensive=0.17&tweet_ev_sentiment=0.08&wic=-1.78&wnli=3.03&wsc=9.95&yahoo_answers=0.17&model_name=sileod%2Fdeberta-v3-base_tasksource-420&base_name=microsoft%2Fdeberta-v3-base) using sileod/deberta-v3-base_tasksource-420 as a base model yields average score of 80.45 in comparison to 79.04 by microsoft/deberta-v3-base.
|
175 |
|
176 |
+
An earlier (weaker) version model is ranked 1st among all tested models for the microsoft/deberta-v3-base architecture as of 10/01/2023
|
177 |
+
Results:
|
178 |
|
179 |
+
| 20_newsgroup | ag_news | amazon_reviews_multi | anli | boolq | cb | cola | copa | dbpedia | esnli | financial_phrasebank | imdb | isear | mnli | mrpc | multirc | poem_sentiment | qnli | qqp | rotten_tomatoes | rte | sst2 | sst_5bins | stsb | trec_coarse | trec_fine | tweet_ev_emoji | tweet_ev_emotion | tweet_ev_hate | tweet_ev_irony | tweet_ev_offensive | tweet_ev_sentiment | wic | wnli | wsc | yahoo_answers |
|
180 |
+
|---------------:|----------:|-----------------------:|--------:|--------:|--------:|--------:|-------:|----------:|--------:|-----------------------:|-------:|--------:|--------:|--------:|----------:|-----------------:|--------:|--------:|------------------:|--------:|--------:|------------:|--------:|--------------:|------------:|-----------------:|-------------------:|----------------:|-----------------:|---------------------:|---------------------:|--------:|--------:|--------:|----------------:|
|
181 |
+
| 87.042 | 90.9 | 66.46 | 59.7188 | 85.5352 | 85.7143 | 87.0566 | 69 | 79.5333 | 91.6735 | 85.8 | 94.324 | 72.4902 | 90.2055 | 88.9706 | 63.9851 | 87.5 | 93.6299 | 91.7363 | 91.0882 | 84.4765 | 95.0688 | 56.9683 | 91.6654 | 98 | 91.2 | 46.814 | 84.3772 | 58.0471 | 81.25 | 85.2326 | 71.8821 | 69.4357 | 73.2394 | 74.0385 | 72.2 |
|
182 |
|
|
|
183 |
|
184 |
+
For more information, see: [Model Recycling](https://ibm.github.io/model-recycling/)
|
185 |
|
186 |
# Citation [optional]
|
187 |
|
|
|
|
|
188 |
**BibTeX:**
|
189 |
|
190 |
+
```bib
|
191 |
+
@misc{sileod23-tasksource,
|
192 |
+
author = {Sileo, Damien},
|
193 |
+
doi = {10.5281/zenodo.7473446},
|
194 |
+
month = {01},
|
195 |
+
title = {{tasksource: preprocessings for reproducibility and multitask-learning}},
|
196 |
+
url = {https://github.com/sileod/tasksource},
|
197 |
+
version = {1.5.0},
|
198 |
+
year = {2023}}
|
199 |
+
```
|
200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
# Model Card Contact
|
203 |
|
204 |
+
damien.sileo@inria.fr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
205 |
|
|
|
206 |
|
207 |
</details>
|