File size: 6,429 Bytes
0b5abeb 1900b01 0b5abeb 1900b01 0b5abeb 1900b01 0b5abeb 628435e 0b5abeb f425e40 0b5abeb 9482887 0b5abeb afeb0ba 0b5abeb afeb0ba 0b5abeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
---
language: en
license: apache-2.0
library_name: transformers
tags:
- deberta-v3-large
- text-classification
- nli
- natural-language-inference
- multitask
- multi-task
- pipeline
- extreme-multi-task
- extreme-mtl
- tasksource
- zero-shot
- rlhf
datasets:
- glue
- super_glue
- anli
- metaeval/babi_nli
- sick
- snli
- scitail
- hans
- alisawuffles/WANLI
- metaeval/recast
- sileod/probability_words_nli
- joey234/nan-nli
- pietrolesci/nli_fever
- pietrolesci/breaking_nli
- pietrolesci/conj_nli
- pietrolesci/fracas
- pietrolesci/dialogue_nli
- pietrolesci/mpe
- pietrolesci/dnc
- pietrolesci/gpt3_nli
- pietrolesci/recast_white
- pietrolesci/joci
- martn-nguyen/contrast_nli
- pietrolesci/robust_nli
- pietrolesci/robust_nli_is_sd
- pietrolesci/robust_nli_li_ts
- pietrolesci/gen_debiased_nli
- pietrolesci/add_one_rte
- metaeval/imppres
- pietrolesci/glue_diagnostics
- hlgd
- paws
- quora
- medical_questions_pairs
- conll2003
- Anthropic/hh-rlhf
- Anthropic/model-written-evals
- truthful_qa
- nightingal3/fig-qa
- tasksource/bigbench
- bigbench
- blimp
- cos_e
- cosmos_qa
- dream
- openbookqa
- qasc
- quartz
- quail
- head_qa
- sciq
- social_i_qa
- wiki_hop
- wiqa
- piqa
- hellaswag
- pkavumba/balanced-copa
- 12ml/e-CARE
- art
- tasksource/mmlu
- winogrande
- codah
- allenai/ai2_arc
- definite_pronoun_resolution
- swag
- math_qa
- metaeval/utilitarianism
- mteb/amazon_counterfactual
- SetFit/insincere-questions
- SetFit/toxic_conversations
- turingbench/TuringBench
- trec
- tals/vitaminc
- hope_edi
- strombergnlp/rumoureval_2019
- ethos
- tweet_eval
- discovery
- pragmeval
- silicone
- lex_glue
- papluca/language-identification
- imdb
- rotten_tomatoes
- ag_news
- yelp_review_full
- financial_phrasebank
- poem_sentiment
- dbpedia_14
- amazon_polarity
- app_reviews
- hate_speech18
- sms_spam
- humicroedit
- snips_built_in_intents
- banking77
- hate_speech_offensive
- yahoo_answers_topics
- pacovaldez/stackoverflow-questions
- zapsdcn/hyperpartisan_news
- zapsdcn/sciie
- zapsdcn/citation_intent
- go_emotions
- scicite
- liar
- relbert/lexical_relation_classification
- metaeval/linguisticprobing
- metaeval/crowdflower
- metaeval/ethics
- emo
- google_wellformed_query
- tweets_hate_speech_detection
- has_part
- wnut_17
- ncbi_disease
- acronym_identification
- jnlpba
- species_800
- SpeedOfMagic/ontonotes_english
- blog_authorship_corpus
- launch/open_question_type
- health_fact
- commonsense_qa
- mc_taco
- ade_corpus_v2
- prajjwal1/discosense
- circa
- YaHi/EffectiveFeedbackStudentWriting
- Ericwang/promptSentiment
- Ericwang/promptNLI
- Ericwang/promptSpoke
- Ericwang/promptProficiency
- Ericwang/promptGrammar
- Ericwang/promptCoherence
- PiC/phrase_similarity
- copenlu/scientific-exaggeration-detection
- quarel
- mwong/fever-evidence-related
- numer_sense
- dynabench/dynasent
- raquiba/Sarcasm_News_Headline
- sem_eval_2010_task_8
- demo-org/auditor_review
- medmcqa
- aqua_rat
- RuyuanWan/Dynasent_Disagreement
- RuyuanWan/Politeness_Disagreement
- RuyuanWan/SBIC_Disagreement
- RuyuanWan/SChem_Disagreement
- RuyuanWan/Dilemmas_Disagreement
- lucasmccabe/logiqa
- wiki_qa
- metaeval/cycic_classification
- metaeval/cycic_multiplechoice
- metaeval/sts-companion
- metaeval/commonsense_qa_2.0
- metaeval/lingnli
- metaeval/monotonicity-entailment
- metaeval/arct
- metaeval/scinli
- metaeval/naturallogic
- onestop_qa
- demelin/moral_stories
- corypaik/prost
- aps/dynahate
- metaeval/syntactic-augmentation-nli
- metaeval/autotnli
- lasha-nlp/CONDAQA
- openai/webgpt_comparisons
- Dahoas/synthetic-instruct-gptj-pairwise
- metaeval/scruples
- metaeval/wouldyourather
- sileod/attempto-nli
- metaeval/defeasible-nli
- metaeval/help-nli
- metaeval/nli-veridicality-transitivity
- metaeval/natural-language-satisfiability
- metaeval/lonli
- metaeval/dadc-limit-nli
- ColumbiaNLP/FLUTE
- metaeval/strategy-qa
- openai/summarize_from_feedback
- metaeval/folio
- metaeval/tomi-nli
- metaeval/avicenna
- stanfordnlp/SHP
- GBaker/MedQA-USMLE-4-options-hf
- sileod/wikimedqa
- declare-lab/cicero
- amydeng2000/CREAK
- metaeval/mutual
- inverse-scaling/NeQA
- inverse-scaling/quote-repetition
- inverse-scaling/redefine-math
- metaeval/puzzte
- metaeval/implicatures
- race
- metaeval/spartqa-yn
- metaeval/spartqa-mchoice
- metaeval/temporal-nli
metrics:
- accuracy
pipeline_tag: zero-shot-classification
---
# Model Card for DeBERTa-v3-large-tasksource-nli
DeBERTa-v3-large fine-tuned with multi-task learning on 600 tasks of the [tasksource collection](https://github.com/sileod/tasksource/)
You can further fine-tune this model to use it for any classification or multiple-choice task.
This checkpoint has strong zero-shot validation performance on many tasks (e.g. 77% on WNLI).
The untuned model CLS embedding also has strong linear probing performance (90% on MNLI), due to the multitask training.
This is the shared model with the MNLI classifier on top. Its encoder was trained on many datasets including bigbench, Anthropic rlhf, anli... alongside many NLI and classification tasks with a SequenceClassification heads while using only one shared encoder.
Each task had a specific CLS embedding, which is dropped 10% of the time to facilitate model use without it. All multiple-choice model used the same classification layers. For classification tasks, models shared weights if their labels matched.
The number of examples per task was capped to 64k. The model was trained for 80k steps with a batch size of 384, and a peak learning rate of 2e-5.
tasksource training code: https://colab.research.google.com/drive/1iB4Oxl9_B5W3ZDzXoWJN-olUbqLBxgQS?usp=sharing
### Software
https://github.com/sileod/tasksource/ \
https://github.com/sileod/tasknet/ \
Training took 6 days on Nvidia A100 40GB GPU.
# Citation
More details on this [article:](https://arxiv.org/abs/2301.05948)
```bib
@article{sileo2023tasksource,
title={tasksource: Structured Dataset Preprocessing Annotations for Frictionless Extreme Multi-Task Learning and Evaluation},
author={Sileo, Damien},
url= {https://arxiv.org/abs/2301.05948},
journal={arXiv preprint arXiv:2301.05948},
year={2023}
}
```
# Loading a specific classifier
Classifiers for all tasks available. See https://huggingface.co/sileod/deberta-v3-large-tasksource-adapters
<img src="https://www.dropbox.com/s/eyfw8i1ekzxj3fa/task_embeddings.png?dl=1" width="1000" height="">
# Model Card Contact
damien.sileo@inria.fr
</details> |