--- language: - multilingual - zh - ja - ar - ko - de - fr - es - pt - hi - id - it - tr - ru - bn - ur - mr - ta - vi - fa - pl - uk - nl - sv - he - sw - ps license: apache-2.0 tags: - mdeberta-v3-base - text-classification - nli - natural-language-inference - multilingual - multitask - multi-task - pipeline - extreme-multi-task - extreme-mtl - tasksource - zero-shot - rlhf datasets: - xnli - metaeval/xnli - nala-cub/americas_nli - MoritzLaurer/multilingual-NLI-26lang-2mil7 - stsb_multi_mt - paws-x - miam - strombergnlp/x-stance - tyqiangz/multilingual-sentiments - metaeval/universal-joy - amazon_reviews_multi - cardiffnlp/tweet_sentiment_multilingual - strombergnlp/offenseval_2020 - offenseval_dravidian - nedjmaou/MLMA_hate_speech - xglue - ylacombe/xsum_factuality - metaeval/x-fact - pasinit/xlwic - tasksource/oasst1_dense_flat - papluca/language-identification - wili_2018 - exams - xcsr - xcopa - juletxara/xstory_cloze - Anthropic/hh-rlhf - universal_dependencies - tasksource/oasst1_pairwise_rlhf_reward - OpenAssistant/oasst1 pipeline_tag: zero-shot-classification --- # Model Card for mDeBERTa-v3-base-tasksource-nli Multilingual [mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) with 30k steps multi-task training on [mtasksource](https://github.com/sileod/tasksource/blob/main/mtasks.md) This model can be used as a stable starting-point for further fine-tuning, or directly in zero-shot NLI model or a zero-shot pipeline. In addition, you can use the provided [adapters](https://huggingface.co/sileod/mdeberta-v3-base-tasksource-adapters) to directly load a model for hundreds of tasks. ```python !pip install tasknet, tasksource -q import tasknet as tn pipe=tn.load_pipeline( 'sileod/mdeberta-v3-base-tasksource-nli', 'miam/dihana') pipe(['si','como esta?']) ``` For more details, see [deberta-v3-base-tasksource-nli](https://huggingface.co/sileod/deberta-v3-base-tasksource-nli) and replace tasksource by mtasksource. # Software https://github.com/sileod/tasksource/ https://github.com/sileod/tasknet/ # Contact and citation For help integrating tasksource into your experiments, please contact [damien.sileo@inria.fr](mailto:damien.sileo@inria.fr). For more details, refer to this [article:](https://arxiv.org/abs/2301.05948) ```bib @article{sileo2023tasksource, title={tasksource: Structured Dataset Preprocessing Annotations for Frictionless Extreme Multi-Task Learning and Evaluation}, author={Sileo, Damien}, url= {https://arxiv.org/abs/2301.05948}, journal={arXiv preprint arXiv:2301.05948}, year={2023} } ```