--- library_name: transformers license: gemma base_model: google/gemma-7b tags: - alignment-handbook - trl - orpo - generated_from_trainer - trl - orpo - alignment-handbook - generated_from_trainer datasets: - silviasapora/low_quality_dpo7k model-index: - name: gemma-7b-orpo-low-quality results: [] --- # gemma-7b-orpo-low-quality This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the silviasapora/low_quality_dpo7k dataset. It achieves the following results on the evaluation set: - Loss: 1.5517 - Rewards/chosen: -0.0554 - Rewards/rejected: -0.0646 - Rewards/accuracies: 0.5612 - Rewards/margins: 0.0092 - Logps/rejected: -1.2920 - Logps/chosen: -1.1085 - Logits/rejected: 268.0282 - Logits/chosen: 297.1682 - Nll Loss: 1.4855 - Log Odds Ratio: -0.6970 - Log Odds Chosen: 0.2856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: inverse_sqrt - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:--------------:|:---------------:| | 1.436 | 0.9955 | 167 | 1.4679 | -0.0508 | -0.0571 | 0.5468 | 0.0063 | -1.1420 | -1.0158 | 288.9292 | 318.3812 | 1.4121 | -0.6895 | 0.1983 | | 1.1098 | 1.9970 | 335 | 1.4451 | -0.0518 | -0.0579 | 0.5468 | 0.0061 | -1.1581 | -1.0353 | 286.4312 | 315.0296 | 1.3839 | -0.7228 | 0.2105 | | 0.5921 | 2.9866 | 501 | 1.5517 | -0.0554 | -0.0646 | 0.5612 | 0.0092 | -1.2920 | -1.1085 | 268.0282 | 297.1682 | 1.4855 | -0.6970 | 0.2856 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1